
A New CRT-RSA Algorithm Secure Against Bellcore
Attacks

Johannes Blömer
Paderborn University

D-33095 Paderborn, Germany

bloemer@upb.de

Martin Otto
∗

Paderborn University
PaSCo Graduate School

D-33095 Paderborn, Germany

martinmo@upb.de

Jean-Pierre Seifert
Infineon Technologies

Secure Mobile Solutions,
SMS IC

D-81609 Munich, Germany

Jean-Pierre.Seifert@infineon.com

ABSTRACT
In this paper we describe a new algorithm to prevent fault
attacks on RSA signature algorithms using the Chinese Re-
mainder Theorem (CRT-RSA). This variant of the RSA sig-
nature algorithm is widely used on smartcards. Smartcards
on the other hand are particularly susceptible to fault at-
tacks like the one described in [7]. Recent results have shown
that fault attacks are practical and easy to accomplish ([21],
[17]). Therefore, they establish a practical need for fault at-
tack protected CRT-RSA schemes. Starting from a careful
derivation and classification of fault models, we describe a
new variant of the CRT-RSA algorithm. For the most realis-
tic fault model described, we rigorously analyze the success
probability of an adversary. Thereby, we prove that our new
algorithm is secure against the Bellcore attack. Only once
in the analysis do we need to refer to a plausible number
theoretic assumption.

Categories and Subject Descriptors
B.8.1 [Reliability, Testing, and Fault-Tolerance]: fault
attacks; C.3 [Special-Purpose and Application-based
Systems]: smartcards; D.4.6 [Security and Protection]:
Cryptographic controls

General Terms
Algorithms, Security

Keywords
RSA, cryptanalysis, faults attacks, Bellcore attack, smart-
cards, Chinese Remainder Theorem

∗Supported by the PaSCo Graduate School, Paderborn Uni-
versity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

1. INTRODUCTION
Smartcards play an important role in modern cryptogra-

phy. Smartcards are used to compute digital signatures,
most notably digital signatures based on RSA. Since speed
is still an issue with modern smartcards, enhancements have
been adopted to the plain RSA signature algorithm. The
most common enhancement is the computation of an RSA
signature using the Chinese Remainder Theorem (CRT). We
will refer to this variant of RSA as CRT-RSA. With CRT-
RSA one can expect a speed-up by a factor of 4 compared to
plain RSA. However, smartcards are not as tamper-resistant
as one may wish. Hence side-channel attacks like fault,
power, and timing attacks, on smartcards have attracted
a lot of attention. Among the side-channel attacks, fault
attacks seem to be easiest to realize [2]. In particular, CRT-
RSA proved to be susceptible to fault attacks. In [7] an
extremely simple attack on CRT-RSA is described. Named
the Bellcore attack, this attack reveals the secret factoriza-
tion of the RSA modulus N by introducing a single fault
resulting in a signature that is correct modulo one of the se-
cret prime factors of N , but faulty modulo the other prime
factor. This attack is particularly devastating because the
type of fault induced is irrelevant.

Several types of countermeasures against fault attacks have
been described, e.g. to compute a signature twice and com-
pare the two results or to verify the result with the public
key before output. However, these two countermeasures are
too costly to be of practical interest. A more sophisticated
software countermeasure has been proposed by Shamir (see
[20]). He suggested to check intermediate results modulo a
small integer. This approach will be described later in more
detail. Of course, general (usually randomized) schemes that
enhance the security of RSA can also prevent fault attacks
or at least make them harder to realize. The most promi-
nent of these randomization schemes is OAEP [4]. Most
smartcard certification authorities, however, require that a
smartcard implements a pure RSA signature algorithm that
is secure without using OAEP or similar schemes.

Although several software countermeasures against fault
attacks have been proposed (see [7], [24]), none of these pro-
posals was based on an explicitly formulated and justified
fault model. Accordingly, no proper security analysis of the
various schemes could be given. Hence, in this paper starting
from a careful derivation and classification of fault models,
we describe a new variant of the CRT-RSA algorithm. For
the most realistic fault model described, we analyze whether

a Bellcore-type attack on the algorithm can be successful. In
[2] it was shown that a fault attack can basically change the
value of any variable used in a smartcard algorithm. Hence,
for any variable used in our scheme we analyze whether a
Bellcore-type attack can be mounted by changing the value
of that particular variable. We prove that for all variables
the success probability of a Bellcore-type fault attack is neg-
ligible. Only once do our proofs rely on a plausible number
theoretic assumption.

Our scheme borrows ideas from Shamir’s countermeasure
against fault attacks as well as the idea of infective compu-
tations from [24]. Shamir suggests choosing a small prime
t of about 32 bits to compute Sp = md mod pt and Sq =
md mod qt and check whether Sp ≡ Sq mod t before com-
bining them with the CRT. As is easily seen, Shamir’s
scheme only protects the signature computations modulo
the two secret prime factors of the RSA modulus N . It
leaves the CRT-combination step to obtain the final signa-
ture modulo N unprotected. Furthermore, as observed in
[24], Shamir’s algorithm has a single point of failure when it
checks if Sp ≡ Sq mod t. Usually, such a comparison relies
on the zero flag only. A single point of failure means that
once this point is successfully attacked, a smartcard may
output a defective signature that can be used to recover se-
crets.

Infective computation, as introduced in [24], means that
any error introduced by a fault attack propagates through
the computation. In particular, in CRT-RSA a faulty sig-
nature will always be faulty modulo both prime factors,
thereby preventing a Bellcore attack. Unfortunately, for
realistic parameters the infective computation proposed in
[24] can be broken. In particular, the method proposed in
[24] restricts the pairs of public/secret exponents in RSA to
pairs, that basically can be broken by Wiener’s small secret
exponent attacks ([5]).

The scheme proposed in this paper extends Shamir’s idea
to protect every single computation step of the signature al-
gorithm, including the CRT combination. We achieve this
by using two small integers t1 and t2 to compute Sp =
md mod pt1 and Sq = md mod qt2. These values are com-
bined to S mod Nt1t2 via the CRT. This combination with
a larger modulus allows to use infective computation steps
afterwards. These infective steps ensure that an error will
cause the final signature to be false modulo both primes p
and q. Infective computations not only avoid single points of
failures. They also allow a card to continue its computation,
even if a fault is detected. Hence, our scheme renders mech-
anism like security resets or error messages pointless. This
is an important feature of our scheme, since error messages
or security resets may leak important and useful information
to an adversary (see for example [14], [6] for more details).

Finally, unlike the scheme proposed in [24], our algorithm
works with any RSA key, no restriction on the key space
applies. To prove security, we present a rigorous analysis of
our scheme.

To describe and classify fault models, we start from the
most powerful adversary imaginable, i.e. an adversary that
can change any specific bit at any specific time of the algo-
rithm execution. However, we make use of several hardware
features employed on realistic smartcards to argue that the
effects of such a precise intrusion are not completely pre-
dictable for an adversary. The hardware mechanisms we are
referring to include randomized clocks, memory encryption

/ decryption schemes, and randomized address scrambling
(see [18], [9]). Like randomized schemes, these hardware
features try to make fault attacks harder by randomizing
the effects of a fault attack in a manner that can not be
controlled or predicted by an adversary.

Based on the effects of randomized clocks, memory en-
cryption/decryption, and randomized address scrambling we
argue that even a very powerful adversary can not hope to
reset a bit value at a specific location and time. Instead
all he can hope is that with a certain probability he will
change the value of a particular variable used by the algo-
rithm. Furthermore, we argue that an adversary can only
hope to change the value of a targeted variable to some ran-
dom value. We also describe some intermediate fault mod-
els, in which the adversary is able to attack specific byte or
bit values. We extend the analysis of our CRT-RSA scheme
to these models as well. We show that in these models the
new CRT-RSA scheme sometimes offers an even better se-
curity, i.e. knowing the effect of an attack exactly helps de-
fending against this attack. In our analysis, we only look at
fault attacks. Combinations with other side channel attacks
like timing or power attacks are not regarded.

The paper is organized as follows: After stating the pre-
liminaries in Section 2, we formulate a careful classification
of fault models in Section 3. We propose a new algorithm
in Section 4 that will be proven to be secure against the
Bellcore attack in Section 5. Section 6 concludes the paper.

2. PRELIMINARIES
Throughout the paper, we will use the following notation.

We assume that an RSA key scheme consists of two primes
p and q that form the RSA modulus N = p · q. We will
denote the public RSA key as e and the private RSA key
as d, satisfying e · d ≡ 1 mod ϕ(N). Here, ϕ(N) denotes
Euler’s totient function. The function l(n) will be used to
denote the binary length of an integer n. We will use a | b
to denote that an integer a divides b, and a 6 | b to denote
the converse.

Usually, smartcards compute RSA signatures S(m) :=
md mod N using the CRT-RSA scheme. Here, the two sig-
nature parts Sp := md mod (p−1) mod p and Sq := md mod (q−1)

mod q are computed first. They are combined using the
Chinese Remainder Theorem (CRT) as S(m) := CRT(Sp, Sq)
mod N . On average, this scheme is four times faster than
the direct computation via a single exponentiation, cf. [12].

The major exploit of fault attacks on smartcards perform-
ing CRT-RSA signatures is an attack first presented in [7]
(and named the ”Bellcore attack”). Here it is assumed that
an adversary induces an error that causes Sp to be defec-
tive while Sq is computed correctly (or vice versa of course).
If the defective CRT-combination S = CRT(Sp, Sq) mod N
is disclosed, the scheme is completely broken as gcd(Se −
m, N) = q.

As we investigate errors on various variables, we use the
following convention: For random errors on a specific vari-
able x, we write f(x) = x+ e(x), where e(x) is the error de-

pendent on x. For random errors, e(x) ∈ [−x, 2l(x) − 1− x].
In some scenarios, e(x) can be specified in greater detail, e.g.
for random byte errors, e(x) = b ·2k with |b| ∈

�

28 a random
byte and 0 ≤ k < l(x)− 7. For single bit errors, |b| = 1 and
0 ≤ k < l(x). We always assume a uniform distribution on
the errors.

All parts of our analysis can be rigorously proven. Only

the analysis for one single variable relies on the following
heuristically justified assumption.

Assumption 1. For an RSA modulus N = p·q, d a secret
key, m ∈

�
N a given message, t � p a prime, e(·) a random

error as defined above, the value

α :=
�
md div (pt + e(pt)) � mod t

can be seen as a random variable uniformly distributed in�
t .

Clearly, α only has a chance to fulfill the assumption cor-
rectly if 2l(pt) is a multiple of t. However, the assumption is
justified for other cases as well, because the distance to the
uniform distribution is negligibly small as t � 2l(pt).

3. DEVELOPMENT OF PRACTICALLY
APPROVED FAULT MODELS

There has been a large number of different fault attacks
in the literature. They differ in the power to locate and time
an attack, in the number of bits affected, in the effect of an
attack (the fault type), in the probability of the implied ef-
fect of an attack, and in prior work that has to be applied to
the card in order to mount the attack, cf. among others [7],
[16], [22], [14], [15], [1], [3], [8], [23], [2], [21]. However, the
characterization of the used fault models has been simple
and insufficient to derive usable frameworks for a satisfac-
tory analysis. Therefore, we present a characterization of
the different parameters needed to fully describe all known
types of fault attacks. This leads to a proper mathematical
formulation of errors induced by such attacks. The derived
fault models are motivated by smartcards as they are used
today.

• For control on the fault location we define the
three classes ”no control”, ”loose control” (a selected
variable can be targeted) and ”complete control” (se-
lected bits can be attacked).

• For control on the timing we also define the three
classes ”no control”, ”loose control” (an error is in-
duced in a block of a few operations) and ”precise
control” (the exact time can be met).

• For the number of bits attacked, we differentiate
between a ”single faulty bit”, ”few faulty bits” (e.g. a
byte) or a ”random number of faulty bits” (bounded
by the length of the attacked variable).

• The fault type describes the character of the fault as
it manifests itself in the chip. This parameter has ap-
peared in the literature as the ”fault model”. We will
break with this tradition as a reasonable description of
a fault model must contain more than just the type of
the fault. Fault types include the classic fault types,
namely the stuck at fault (saf), where bits permanently
keep their value from the point of a successful attack,
the bit flip fault (bf), where bits are flipped to their
complementary value and the random fault (rf), where
bits are changed to a random value, possibly the one
they already had. In addition to these classic fault
types, we also have the fault type derived from recent
work in [21]. Their approach enables them to set a
single specific (targeted) bit to 1 or reset that bit to 0.
This is the bit set or reset fault (bsr).

• Attacks mounted also have a certain probability as-
sociated with them. Usually an attack is not certain to
be successful, it is only so most of the time. Therefore,
any effect as well as the control on location and timing
might require a probability or even a distribution to
be completely described. For example, some physical
attacks might have a greater probability of resetting a
bit than of setting that bit (see [8], [6]). No control
on the location implies that a specific location is ex-
pected to be hit with a certain probability 1/(number
of locations).

To derive reasonable fault models, we combine parameter
settings known from actual attacks with hardware counter-
measures in effect on the card. As we are guided by practical
considerations, we always assume the most powerful adver-
sary, i.e. the adversary presented in [21] and [17] able to use
(bsr) faults. This adversary can select any specific area on
the card at a precise time (on his clock) and set the stored bit
to any specific value. We also consider smartcards, that may
have several hardware countermeasures (see [18]). The ar-
chitecture of a modern smartcard is sketched in Figure 1. In
these realistic scenarios, the effective power of the adversary
is reduced significantly, e.g. knowledge about the location of
the induced fault need not imply knowledge about the posi-
tion of the bit within an algorithm. Similarly, precise timing
need not imply knowledge of the actual step performed at
that time. The following five fault models gradually improve
the strength of the card’s countermeasures.

RSA accelerator

BEU

RNG
random number generator

CPU
BEU bus encryption unit

AS address scrambler

EEPROM ROM RAM

private user keys
OS, RSA, COMP128,

system keys

Figure 1: architectural sketch of a modern high-end
smartcard

Fault Model #1: Precise Bit Errors.
Parameter setting. For this strong fault model, we assume

that the adversary has precise control on both timing and
location. This means that the adversary knows the attacked
bit as well as the attacked operation. Note that an attack
usually happens before the variable is used in a line of an
algorithm. We assume that only a single bit is affected.
This resembles the (bsr) fault type that is achieved by at-
tacks described in [21] or [17] on RAM or EEPROM of an
unprotected smartcard.

Mathematical model. This attack can be modeled as an
addition or subtraction of a single bit, i.e. a variable X is
changed to X ′ = X ± 2k for 0 ≤ k ≤ l(X) − 1.

Motivation from the real world. Although high-end smart-
cards implement sophisticated hardware countermeasures,
many smartcards currently used are either too old or too
cheap to do so. Hence, this fault model is a realistic one.
It assumes the strongest adversary and the weakest card.
Since algorithms secure in this fault model are secure in the
weaker models as well, it is a particularly interesting model.

Fault Model #2: Precise Byte Errors.
Parameter setting. In this scenario, we assume that the

timing is precise. Hence, a specific operation can be tar-
geted. However, control on location is loose, i.e. the number
of bits affected can only be bounded by a block of few bits
(we assume a byte). We allow any fault type in this model.

Mathematical model. The attack can be modeled as an
addition or subtraction of an unknown error byte at a known
position, i.e. a variable X is changed to X ′ = X ± b · 2k for
a known 0 ≤ k ≤ l(X) − 8 and an unknown b ∈

�

28.
Motivation from the real world. This model is motivated

by the fact that the strong adversary’s power is reduced
on smartcards if encryption of the data is used. Usually,
all data stored in EEPROM and RAM is encrypted [18].
Hence, if an error is induced into memory, the CPU will see
a random block of data. The same model is derived if the
bus lines are attacked.

Fault Model #3: Unknown Byte Errors.
Parameter setting. In this scenario, we assume loose con-

trol on both timing and location. The loose control on lo-
cation means that a certain variable can be targeted but
the number of bits affected can only be bounded by a block
of few bits (usually a byte). In addition, loose control on
timing means that the attacker can only affect the variable
within a specific time frame that usually contains several
instructions. The exact instruction affected by the attack is
unknown. Hence, the attacker does not know for sure which
byte of the variable is currently used by the algorithm. We
allow any fault type in this model.

Mathematical model. This attack can be modeled as an
addition or subtraction of an error byte, i.e. a variable X is
changed to X ′ = X ± b ·2k for an unknown 0 ≤ k ≤ l(X)−8
and an unknown b ∈

�

28.
Motivation from the real world. This model is motivated

by the fact that attacks on EEPROM and RAM with ad-
dress scrambling (cf. [18]) will not allow to specify when the
attacked block is requested by the CPU. Encryption of the
memory ensures that a faulty bit affects a whole block of
data.

Fault Model #3’: Unknown Byte Errors in Un-
known Variables.

Parameter setting. This model assumes loose control on
location, once again a whole byte is affected, and no control
on timing. Due to the latter it is unknown at which exact
time within the program the attack is mounted. It is even
unknown, which variable is faulty.

Mathematical model. We model this type of fault as a
variable dependent error, i.e. a variable X is changed to
X ′ = X ± b · 2k for an unknown 0 ≤ k ≤ l(X) − 8 and an
unknown b ∈

�

28. Note that due to the unprecise timing,

the attacked variable X is also unknown (to some degree).
Motivation from the real world. The strong adversary’s

power is effectively reduced to this model if the smard-
card uses memory encryption in RAM and EEPROM. This
causes any bit fault to affect a whole block of data. In ad-
dition, some smartcards use a randomized clock (cf. [9]).
In this case, the attacker knows that a successful attack will
change a block of data. But he does not know the exact time
of the change within the algorithm. Therefore the attacker
does not know the position of the block as it is used in the
CPU.

Fault Model #4: Random Errors.
Parameter setting. In this fault model, we assume that

the adversary has no control on the location of a fault and
only a loose timing, i.e. he can target an interval of some
operations. This interval may have been derived from other
sources of information, for example from the power profile of
the card (see [2]). The number of affected bits is unknown.

Mathematical model. We model this uncertainty on the
number of affected bits by a random fault. We assume that
for a given variable X, the uniformly distributed random
value f(X) ∈ [0, 2l(X) − 1] is used by the algorithm. In this
model, any fault may result in any faulty value.

Motivation from the real world. This scenario is motivated
by strong high-end smartcards completely armed with coun-
termeasures. Memory encryption, address scrambling and a
randomized clock imply that any error induced into mem-
ory or the CPU at a vague point will leave the attacker at
most with the information that a certain variable is faulty.
It therefore enforces a very weak adversary.

Reaction Of The Smartcard
A smartcard may react in various ways to an attack: Un-

protected cards will fail to notice the attack and output a
faulty result, leaving them vulnerable to the Bellcore attack.
More sophisticated smartcards may have countermeasures
that alter the result to some random value or use detection
mechanisms that report an error to the user. The error out-
put may either depend on the kind of error or be unspecific.

Modern high-end smartcards may have additional hard-
ware countermeasures (see [6]), that might successfully fight
some of these attacks and react with a complete security re-
set. This reaction of the card may already be set off before
an attack successfully induced an error.

Implications For Our Analysis
So far, no software countermeasures against fault model

#1 are known (see Section 6). Lukily, the models #1 and #2
are unlikely in the real world, as all trustworthy smartcards
are fully armed with a variety of countermeasures. This
causes a precise location of an affected bit or byte to be
unrealistic.

We will therefore concentrate to analyze security against
fault models #3 and #4. The two models #3 and #3’ are
equivalent, as model #3’ usually only means that the faulty
variable X is from a small set of possible variables. If the
attack hits every variable within this set with a sufficiently
high probability, a specific variable is expected to be hit after
a relatively low number of attacks. Hence, both scenarios
can be modeled in the same way (see [6]).

Our analysis will show that only a negligible number of
faults result in an output that potentially leaks valuable

information to an adversary. Hence, the smartcard needs
no other means of reaction to errors such as error messages
or security resets. We will therefore not consider any such
reaction mechanisms in the following.

4. THE NEW APPROACH
The drawbacks of Shamir’s small prime verification coun-

termeasure explained in the introduction show that better
methods are needed. As Shamir’s basic idea is very promis-
ing, we extend this countermeasure to the whole CRT-RSA
computation. We also use infective computations as intro-
duced by [24] to eliminate the single point of failure of a
checking step.

Algorithm 2 (infective CRT-RSA).
Input. A message m ∈

�
N

Output. Sig := md mod N or a random number in
�

N

In Memory. p · t1, q · t2, N , N · t1 · t2, dp, dq, t1, t2, et1

and et2

1 Let Sp := mdp mod p · t1
2 Let Sq := mdq mod q · t2
3 Let S := CRT(Sp, Sq) mod N · t1 · t2
4 Let c1 := (m − Set1 + 1) mod t1
5 Let c2 := (m − Set2 + 1) mod t2
6 Let Sig := Sc1·c2 mod N

7 output Sig

The basic algorithm for CRT-RSA consists of three steps,
the computation of the two parts Sp and Sq and their com-
bination to the signature S using the CRT. We modify the
computation of all three values implementing a variant of
Shamir’s idea. Then we introduce a detection mechanism
that is not required to be error free in order to prevent a
fault attack on the whole smartcard. If an error was in-
duced at any step of the algorithm, this countermeasure will
change the final result in a way unpredictable to an adver-
sary. The resulting algorithm looks extremely simple, but
it proves to be very effective in the most practical attack
model assuming the strongest adversary.

As a precomputation step that can be done for any smart-
card at production time, generate a valid RSA key with
(N, e), N = p · q, as the public key and d as the correspond-
ing private key satisfying e · d ≡ 1 mod ϕ(N).

Additionally, select two integers t1 and t2 of sufficiently
large bitlength to withstand exhaustive search (see Section
5.5 for concrete suggestions) which must satisfy several con-
ditions in order to allow a secure scheme:

1. t1 and t2 must be coprime
2. gcd(d,ϕ(t1)) = 1 and gcd(d,ϕ(t2)) = 1
3. t1 and t2 are squarefree
4. ti ≡ 3 mod 4 for i ∈ {1, 2}
5. t2 6 |X = pt1 · ((pt1)

−1 mod qt2)

Note that the use of two small moduli instead of a single
one has already been described by Shamir in [20], but for a
different use. Let dp := d mod ϕ(p·t1), dq := d mod ϕ(q ·t2).
Afterwards, compute two corresponding public keys et1 and
et2 such that d · eti

= 1 mod ϕ(ti). Store p · t1, q · t2, N ,
N ·t1·t2, dp, dq , t1, t2, et1 and et2 on the smartcard. It is easy
to see that the algorithm computes the correct signature if
no error occurs.

Let us briefly comment on the five conditions for the small
primes ti: Condition 1 is needed to ensure that the CRT

combination of Sp and Sq works, because it requires the two
moduli to be coprime. Condition 2 is required to ensure that
the small keys eti

(i = 1, 2) can be generated. Condition 3
must hold, because otherwise the equation md·eti ≡ m mod
ti may not hold. This condition can be further relaxed.
However, we suggest choosing primes for both ti. Condition
4 ensures a good resistance against attacks on the exponents
dp and dq. The security analysis will further explain this
condition. Finally, Condition 5 provides security against
attacks on the CRT combination (see the analysis of attacks
on line 3 below). Section 4.1 will show that choosing both
ti as strong primes is a useful recommendation.

4.1 Efficiency Of The New Algorithm
Now we will show that the new algorithm is indeed an ef-

ficient algorithm to compute RSA signatures. The efficiency
depends on the keys ti. The additional costs compared to
the plain CRT-RSA method are mainly an increased number
of operations in lines 1 and 2 due to the larger moduli. This
increases the size of the exponent and of the intermediate
results. These have to be computed in a larger group now.
The additional costs of the CRT (due to a larger modulus)
and the costs of the two modular exponentiations modulo
t1 and t2 (in lines 4 and 5) do not contribute to the overall
costs significantly. If quadratic time complexity is assumed
for the modular exponentiations in

�
pt1 and

�
qt2, the sav-

ings compared to the plain CRT-RSA scheme is lowered to
1/3 instead of 1/4 (for l(ti) ∈ {60, 80}) of the cost of the
plain CRT-RSA exponentiation. This is still an acceptable
speedup.

For the key generation process, which is usually performed
on the card at production time, we can efficiently find suit-
able candidates for t1 and t2. First, a valid RSA key pair
((e, N), d) is chosen, with N = p · q. Then the two small
moduli t1 and t2 are generated. We would like to emphasize
the fact that neither the algorithm nor the small moduli im-
pose any restrictions on the choice of the main RSA key, no
special structure or generation process is required. Hence,
any valid RSA key pair can be used for ((e, N), d).

We suggest choosing both ti as different strong primes, i.e.
(ti−1)/2 are also primes. As ti � p, q this obviously satisfies
Conditions 1, 3, and 4. Condition 2 is not satisfied for a fixed
ti in a fraction of about 1/ti cases. Therefore given l(ti)
large enough, this probability is negligible. For randomly
chosen ti, the values pt1 and qt2 are independent, therefore
(pt1)

−1 mod qt2 is uniformly distributed in
�

qt2. As t2 6 |pt1,
this means that the probability that a chosen t2 does not
satisfy Condition 5 is at most 1/t2. Hence, we expect very
few strong prime choices. Since the density of strong primes
is conjectured to be asymptotically D ·x/ log2(x) ([13]), the
task of finding suitable ti is easy. Here D ≈ 0.6601618 is the
twin prime constant.

Note that it is also possible to use a modified CRT combi-
nation that can handle the case t1 = t2. Hence, it suffices to
choose a single t. We choose two in order to use the standard
CRT.

5. SECURITY ANALYSIS OF THE
PROPOSED COUNTERMEASURE

5.1 Undetectable Errors
For the security analysis, we need to investigate the prob-

ability of any induced error to circumvent our countermea-

sure and result in an undetectable error. Note that we are
only concerned with errors that cause the final signature to
be correct modulo p but false modulo q (or vice versa), in
which case the classic Bellcore attack can be applied. Oth-
erwise, no exploits of specific errors in a faulty CRT-RSA
signature are known yet. In our analysis, we do not look at
combinations with other side channel attacks like timing or
power attacks.

The checking mechanism in lines 4 and 5 is done via a
small modulus, hence, undetectable errors are introduced
into the system. However, we will show that the number
of these errors is negligibly small. Therefore, they pose no
threat to the security of the system.

An error will slip by lines 4 and 5 undetected if it is elim-
inated by the modular reduction. If S′ is a faulty value for
S, then if S′ = S + k · t1 · t2, k ∈

�
, both modular reduc-

tions in lines 4 and 5 will fail to detect this error and set
c1 = c2 = 1. For other values of S′, it is S′ 6= S mod ti for
i = 1 or i = 2. Hence S′eti 6= m mod ti, which in turn forces
m−S′eti > 0 mod ti. Therefore, it is ci 6= 1. Note that this
observation is independent of the type of error.

However, in order to analyze the scheme, we need to de-
fine our fault model. For our analysis, we assume again
the strongest adversary attacking the best protected card.
We will only analyze in detail the most interesting/practical
scenario, the random error fault model #4, and show its
security against the Bellcore attack. Results for the byte
error fault models #2, #3 yield even better results. See the
appendix for details on attacks using the other fault models.
The random error fault model #4 assumes that an attacked
value x is replaced by a random bit string f(x) = x+e(x) as
defined in Section 2. For simplicity, we only assume a single
fault. However, as long as multiple errors are uncorrelated,
the results are the same. Note that it is virtually impos-
sible to correlate attacks on smartcards that use hardware
countermeasures.

The two special inputs m = 0 and m = 1 will prove
dangerous to the algorithm in the presence of some faults.
Later, we will describe several enhancements to our scheme
such that also these two messages cannot be exploited in a
fault attack.

In the following analysis of attacks on each variable, the
term success probability always refers to the success proba-
bility for a random fault induced into the attacked variable
to result in an undetectable error such that the Bellcore at-
tack can be applied.

5.2 Attacks On Lines 1 And 2

• Attack on the stored variable ���
The success probability for an attack on dp is at most
3/t1 for messages m 6≡ ±1 mod t1. This probability is
taken over the errors. A fraction of at most 3/t1 of
all messages satisfies m ≡ ±1 mod t1. The message
m = 1 is secure. For other messages m ≡ ±1 mod t1,
m 6= 1, the success probability is at least 1/2.

Comment. Although this analysis seems to prove the
algorithm insecure, this is not the case. Any adversary
capable of constructing malicious instances of mes-
sages, i.e. an m ≡ ±1 mod t1, needs to know t1. But
this parameter is secret. Hence, the adversary has no
information on how to construct m. Therefore, the
best he can do is to randomize the inputs. And since

the number of malicious messages is less than 3/t1,
this is a secure situation.

Proof. Let m 6≡ ±1 mod t1. Given m, an error
e(dp) leads to an undetectable error if

me(dp) ≡ 1 mod t1. (1)

We need to analyze how many e(dp) exist at most with
(1). Consider gcd(e(dp), t1 − 1). Since t1 is a strong
prime, we get gcd(e(dp), t1 − 1) ∈ {1, 2, (t1 − 1)/2, t1 −
1}.

Any e(dp) with gcd(e(dp), t1 − 1) ∈ {1, 2} can be writ-
ten as e(dp) = 2l · b, b odd and gcd(b, t1 − 1) = 1. For

these e(dp), (1) implies m2l

≡ 1 mod t1. Next, since

t1 is a strong prime, the equation x2l

≡ 1 mod t1 has
only the solutions x ≡ ±1 mod t1. We conclude that
for m 6≡ ±1 and gcd(e(dp), t1 − 1) ∈ {1, 2}, no error
will be undetectable.

Hence it remains to bound the number of e(dp) with

gcd(e(dp), t1 − 1) ∈ {(t1 − 1)/2, t1 − 1} and me(dp) ≡

1 mod t1. The worst case for m is if m(t1−1)/2 ≡ 1 mod
t1, in which case any e(dp) with the property that e(dp)
is a multiple of (t1−1)/2 leads to an undetectable fault.

Since e(dp) ∈ [−dp, 2l(dp)+1 − 1], the number of e(dp)
with gcd(e(dp), t1−1) ∈ {(t1−1)/2, t1−1} is a fraction
of at most 2/(t1 − 1) < 3/t1 of all possible e(dp).

Let us now determine the number of messages m ≡
±1 mod t1. As the messages are in

�
N, there are at

most 2 · bN/t1c + 2 messages satisfying the condition
m ≡ ±1 mod t1. This is a fraction of less than 3/t1 of
all possible messages.

Now let m ≡ 1 mod t1. If m = 1, then me(dp) = 1 and
Sp = 1. Hence, the error has no effect. Otherwise,
every fault will cause an undetectable error, because
me(dp) ≡ 1 mod t1 independent of the error e(dp).

Let m ≡ −1 mod t1. The probability that a random
fault causes an undetectable error is at least 1/2, since

every even e(dp) yields me(dp) ≡ 1 mod t1. In addi-
tion, if e(dp) is invertible modulo (t1 − 1), the same
considerations as above apply. This increases the suc-
cess probability further.

• Attack on the stored variable ��� 1
The success probability for an attack on pt1 is at most
2/t1. This result is based on Assumption 1. The prob-
ability is taken over random choices of the error.

Proof. If the modulus is randomly changed to pt′1 =
pt1 + e(pt1), write md = α0 · (pt1 + e(pt1)) + α1 with
α1 < pt1 + e(pt1). The correct result Sp is now Sp =
α0 · e(pt1) + α1 mod pt1, while the faulty result S′

p is
α1. An undetectable error happens, if Sp ≡ Sq mod t1,
hence if α0 ·e(pt1)+α1 ≡ α1 mod t1. This is equivalent
to α0 · e(pt1) ≡ 0 mod t1.

As t1 is a prime, t1 has to divide at least one of the two
factors. Hence, we need to compute the probability of
0 ≡ e(pt1) mod t1 and of 0 ≡ α0 = md div (pt1 +
e(pt1)) mod t1. As e(pt1) is an uniformly distributed
integer in a contiguous interval and α0 is uniformly
distributed by assumption 1, the success probability is

at most 1/t1 for each factor, and altogether at most
2/t1. This probability is taken over random choices of
the error.

• Attack on � or the exponentiation’s interme-
diate variable
The success probability for an attack during the expo-
nentiation is at most 2/t1 for messages m 6≡ 0 mod t1.
This probability is taken over the errors. For messages
m ≡ 0 mod t1, all faults yield an undetectable error.
A fraction of at most 1/t1 of all messages m satisfies
m ≡ 0 mod t1.

Comment. There are many possible ways to com-
pute mdp mod pt1. Algorithm 3 presents a timing and
simple power attack secure version of the well-known
square-and-multiply algorithm (cf. [10], [11]). The re-
sult holds for other exponentiation algorithms as well.

Again, some messages are malicious, but similar to the
reasoning before, the adversary can gain no advantage
from this fact as he cannot choose m accordingly. At-
tacks on y0 and y1 resemble the same situation if they
get incorporated into the computation at all. If the
modulus pt1 is attacked during the exponentiation, the
resulting scenario is equivalent to that analyzed for a
global attack on pt1 above.

Algorithm 3 (modular exponentiation).
Input. A message m ∈

�
N, a key d ≥ 3, a modulus

pt1
Output. md mod pt1
1 Let y := m2 mod pt1
2 For i from l(d) − 2 downto 1 do
3 Let y0 := y

4 Let y1 := y · m mod pt1
5 Let y := y2

di
mod pt1

6 Let y0 := y

7 Let y1 := y · m mod pt1
8 Let y := ydi

mod pt1
9 output y

Proof. If Algorithm 3 is attacked at the time when
i = l, and the intermediate value y is altered, we have

S′

p = (y + e(y))2
l−1

· mw for w =
� l−1

i=1 di · 2
i. Hence

messages m ≡ 0 mod t1 lead to S′

p ≡ Sp mod t1 and to
an undetectable error in line 4 of Algorithm 2. There
are at most 1/t1 of all possible messages satisfying this
condition.

For messages m 6≡ 0 mod t1, we analyze the proba-

bility of (y + e(y))2
l−1

≡ (y)2
l−1

mod t1. First con-
sider the case (y + e(y)) ≡ 0 mod t1. This implies
(y)l−1 ≡ 0 mod t1 as well. Since y is of the form mx

for some x, this in turn implies m ≡ 0 mod t1, which
is impossible.

From now on we assume y + e(y) 6≡ 0 mod t1. Then

(y + e(y))2
l−1

≡ (y)2
l−1

mod t1 implies 1 = (y/(y +

e(y)))2
l−1

mod t1. Since t1 ≡ 3 mod 4, this is equiv-
alent to 1 = (y/(y + e(y)))2, which in turn implies
±1 = (y/(y + e(y))). For any fixed y, there are exactly
two choices of e(y) that satisfy this equality. Hence,
in case m 6≡ 0 mod t1 we can bound the success prob-
ability by 2/t1.

• Attack on the result � �
The success probability for an attack on Sp is at most
1/t2 for messages m 6= 0, 1. Again, the probability is
taken over the error.

This case will be analyzed while considering attacks
on the CRT combination in line 3.

5.3 Attacks On Line 3
Line 3, the CRT combination, may also be successfully at-
tacked. We assume that S = Sp +X ·(Sq−Sp) mod N ·t1 ·t2
with X = pt1 · ((pt1)

−1 mod qt2). Here X is a precomputed
value stored on the smartcard.

• Attack on the result � , and on the two addends
� � and ��� (���	�
� �)
The success probability for an attack on S, Sp or X ·
(Sq −Sp) is at most 1/(t1 · t2). The probability is taken
over random errors only, it is independent from the
chosen message.

Proof. If S is attacked directly, then S′ = S+e(S).
This would circumvent the countermeasure iff e(S) ≡
0 mod ti for both i. Because both ti are different
primes, this means that e(S) ≡ 0 mod t1 ·t2 must hold.
As the error e(S) comes from a contiguous interval,
this probability is at most 1/(t1 · t2). The same re-
sult holds for attacks on the two summands Sp and
X · (Sq − Sp).

• Attack on �
The success probability for an attack on X is at most
1/(t1 · t2) for all but a fraction of 2/ min(t1, t2) mes-
sages. This probability is taken over random choices
for the error.

Comment. An attack on X will result in S′ = S+e(X)·
(Sq − Sp), which may be an undetectable error if t1 ·
t2|e(X)·(Sq−Sp). The probability for this requirement
is at most 1/ min(t1, t2). A detailed analysis of this
case can be found in Appendix A. Moreover, the error
e(X) also needs to be a multiple of either p or q in
order to apply the Bellcore attack.

As with attacks on dp, the adversary has no informa-
tion on how to construct a message that yields Sq −Sp

to be a multiple of t1, t2 or both. His best choice is to
choose random messages, which only gives him a neg-
ligible success probability. Hence, this attack is not
promising to an adversary.

• Attack on � � or ��� or (���	��� �)
The success probability for an attack on Sp or Sq is
less than 1/t2. This probability is taken over random
choices of the error only.

Proof. If an adversary attacks either Sp or Sq in
the second summand, the output of the CRT recom-
bination is S′ = S + e(Sp) · X (or e(Sq) respectively).
This causes an undetectable error if t1 · t2|e(Sp) · X.
As t1 and t2 are primes, this means that both ti have
to divide at least one factor. As t1 always divides
X = pt1 · ((pt1)

−1 mod qt2) and t2 never divides X by
Condition 5, this may only happen if t2|e(Sp). Because
e(Sp) is uniformly distributed over an interval of con-
secutive numbers, the success probability is at most
1/t2. The same reasoning holds for (Sq − Sp).

Comment. If t2 is not chosen carefully to prevent t2|X,
the success probability is increased with the probabil-
ity to meet t2|X. This is independent from the error,
therefore any error e(Sp) 6= 0 would be harmful. This
explains Condition 5 of the condition list for selecting
t1 and t2.

5.4 Attacks On Lines 4 – 6
We also need to investigate the possibilities to attack the

detection mechanism, lines 4 - 6. But attacks on the compu-
tation of ci are in vain unless another successful attack has
been carried out already. If a random error into a correct ci

is induced, it is ci 6= 1 and the final signature will look like
a random value. The same consideration applies to line 6.

Excluding the two messages � = 0 and � = 1.
The analysis shows that choosing m ∈ {0, 1} leads to a ma-
licious message as m ≡ 0, 1 mod ti in these cases as well.
The choice m = 0 or m = 1 is useful for an adversary in
attacks on m, on the values Sp and Sq, and on the inter-
mediate results of the exponentiation. Therefore, these two
messages must be treated separately. For all other cases,
the adversay’s ability to create malicious messages implies
knowledge about ti. As we assume these parameters to be
secret, the adversary has no better choice than to choose m
at random. This leaves him with a success probability of
at most 1/ti. Hence, ti is a security parameter and can be
chosen large enough to effectively prevent efficient attacks.

Now let us explain several methods dealing with the case
m ∈ {0, 1}. The first method is to use padding schemes.
In fact, almost any padding scheme, deterministic or ran-
domized, will ensure that m = 0 and m = 1 will either not
be signed at all or will only be signed with negligible prob-
ability. However, as explained in the introduction, most
smartcard certification authorities require that a smartcard
implements a pure RSA signature algorithm that is secure
without using OAEP or similar padding schemes.

To avoid padding schemes, one can modify the message
used in lines 1 and 2 in the following way: In line 1 one
uses the message mp := m + r1 · p and in line 2 the message
mq := m+r2·q. Here, 1 < ri < ti, i = 1, 2 are fixed numbers.
Obviously, it should hold that r1 ·p mod t1 6∈ [−2, . . . 2], and
for line 2 equivalently. In this way, the algorithm actually
computes md mod N . This blinding technique is also useful
against other side channel attacks.

fault attack on probability of the attack

line 1 3/ min(t1 , t2)
line 2 3/ min(t1 , t2)
line 3 2/ min(t1 , t2)
line 4 0 in our fault model
line 5 0 in our fault model
line 6 0 in our fault model

Table 1. Summarizing the success probabilities of a fault
attack adversary

Summarizing the results. Table 1 shows the most suc-
cessful attack scenarios on each line of Algorithm 2. Summa-
rizing the results of this section, the probability to induce
an error that can fool our countermeasure and still break
the system by the Bellcore attack is negligibly small if the
bitlength of t1 and t2 is large enough. Additionally, in the
real world various randomization strategies are applied on
the card to counteract other side-channel attacks. These

measures show that malicious messages, which have been
shown to exist for some attacks, are virtually impossible to
create.

5.5 Further Security Considerations
Note that disclosure of most intermediate variables can

be used to break the system. E.g. if our countermeasure
prevents a Bellcore attack on a faulty Sp using c1 6= 1, c2 = 1
and c1 is revealed, then gcd(me − Sigc1 , N) = p. This also
implies that the bitlength of the parameters ti must be large
enough to defend against a brute force search on ci from lines
4 and 5 of Algorithm 2.

The length of the two parameters ti should be as small
as possible to ease the cost of computation, but it must be
large enough to guarantee security. Section 5.1 shows that
the most promising attacks succeed with a probability of at
most 3/ min(t1, t2). Hence, both t1 and t2 must be large
enough to ensure that attacking the scheme succeeds only
with negligible probability. The definition of ”small” and
”negligible” will have to be adapted to the actual imple-
mentation of a system using our algorithm. If we assume
a very high level of security, we will demand a security of
280, i.e. l(ti) > 80. Less conservative security considerations
may allow to reduce this bound. Practical applications may
only need to guarantee the security of the signature key for
a small time like 2 years — today’s credit cards incorporate
the same security feature. In cases like these, l(ti) = 60
seems to be secure (the SETI@home project as one of the
largest open attacks achieved about 261 operations [19]). If
less powerful attacks are assumed, this level might be low-
ered even further.

6. CONCLUSIONS
The fault models described in Section 3 show that the

adversaries known in the literature can be described with
few parameters. This description leads to a common model
with proper mathematical formulations. The models always
assume quite natural the most powerful adversary known.
However, the power of the adversary is gradually reduced
due to countermeasures in effect on the attacked smartcard.

The proposed algorithm develops known ideas into a form
that can be proven to be secure within the presented frame-
work with respect to the Bellcore attack. The only problem
still unsolved by software mechanisms poses the fault model
#1 (precise bit error attacks on an unprotected smartcard).
If the power of the adversary is not reduced by hardware
or software means, the adversary may perform a successful
oracle attack circumventing the proposed countermeasure:
As attacks like those described in [21] or [17] allow to set
any specific bit to any specific value, we just need l(x) steps
to determine the bit pattern, and hence the value, of any
parameter x. We guess a bit value, set that bit and verify
whether the final result and therefore the guess is correct
or not. This reveals any attacked parameter and only uses
the knowledge whether a fault occurred or not. No specific
value is needed. No efficient software countermeasure pro-
tecting against such a fault can withhold that information
from the adversary. Therefore, we insist that all currently
proposed CRT-RSA implementations are broken by this at-
tack. To prevent this fault model #1, smartcards must fight
the cause of error rather than the effect on computation to
reduce the power of the adversary significantly. Luckily, var-
ious but not all hardware manufacturers of cryptographic

devices such as smartcard ICs have been aware of the im-
portance of protecting their chips against intrusion. To do
so they use carefully developed logic families, sensors, filters,
regulators, etc. We are also investigating possible software
countermeasures that use random bits to alter the param-
eters. As oracle attacks need to test several identical runs
of an algorithm, this will effectively reduce the power of the
adversary. We will elaborate this idea and present an en-
hanced algorithm in a different paper shortly.

7. REFERENCES
[1] R. Anderson and M. Kuhn. Tamper resistance – a

cautionary note. In Proceedings of the Second
USENIX Workshop on Electronic Commerce, pages 1
– 11, Oakland, California, November 18-21 1996.
USENIX Association.

[2] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and
J.-P. Seifert. Fault attacks on RSA with CRT:
Concrete results and practical countermeasures. In
Workshop on Cryptographic Hardware and Embedded
Systems 2002 (CHES 2002), Hotel Sofitel, San
Francisco Bay (Redwood City), USA, August 13–15
2002.

[3] F. Bao, H. Deng, R. Y. Jeng, D. Narasimhalu, A. and
T. Ngair. Breaking public key cryptosystems on
tamper resistant devices in the presence of transient
faults. In B. Christianson, B. Crispo, M. Lomas, and
M. Roe, editors, Security Protocols, volume 1362 of
Lecture Notes in Computer Science, pages 115–124.
Springer-Verlag, 1998.

[4] M. Bellare and P. Rogaway. Optimal asymmetric
encryption. In Advances in cryptology—EUROCRYPT
’94 (Perugia), Lecture Notes in Computer Science,
pages 92–111. Springer, Berlin, 1995.

[5] J. Blömer and A. May. personal communication, 2002.

[6] J. Blömer and J.-P. Seifert. Fault based cryptanalysis
of the Advanced Encryption Standard (AES). In
Seventh International Financial Cryptography
Conference (FC 2003) (Gosier, Guadeloupe, FWI
January 27-30), 2003.

[7] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the
importance of checking cryptographic protocols for
faults. In W. Fumy, editor, Advances in Cryptology -
EUROCRYPT’97, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer-Verlag, 1997.

[8] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the
importance of eliminating errors in cryptographic
computations. J. Cryptology, 14(2):101–119, 2001.

[9] C. Clavier, J.-S. Coron, and N. Dabbous. Differential
power analysis in the presence of hardware
countermeasures. In Cryptographic Hardware and
Embedded Systems – Proceedings of CHES 2000,
Worcester, MA, USA, volume 1965 of Lecture Notes
in Computer Science, pages 252–263. Springer-Verlag,
2000.

[10] J.-S. Coron. Resistance against differential power
analysis for elliptic curve cryptosystems. In
Proceedings of Cryptographic Hardware and Embedded
Systems (CHES’99), volume 1717 of Lecture Notes in
Computer Science, page 292 ff. Springer-Verlag, 1999.

[11] J.-S. Coron, P. Kocher, and D. Naccache. Statistics
and secret leakage. In Proceedings of Financial

Cryptography, volume 1962 of Lecture Notes in
Computer Science, page 157 ff. Springer-Verlag, 2000.

[12] C. Couvreur and J. Quisquater. Fast decipherment
algorithm for RSA public-key cryptosystem.
Electronic Letters, 18(21):905–907, 1982.

[13] G. Hardy and J. Littlewood. Some problems of
’Partitio Numerorum’ III: On the expression of a
number as a sum of primes. In Acta Mathematica,
volume 44, pages 1–70, 1922.

[14] M. Joye, J.-J. Quisquater, S.-M. Yen, and M. Yung.
Observability analysis: Detecting when improved
cryptosystems fail. In B. Preneel, editor, Topics in
Cryptology – CT-RSA 2002, volume 2271 of Lecture
Notes in Computer Science, pages 17–29, San Jose,
CA, USA, February 18–22, 2002, February 2002.
Springer-Verlag.

[15] B. Kaliski, Jr. and M. Robshaw. Comments on some
new attacks on cryptographic devices. Bulletin 5, RSA
Laboratories, July 1997.

[16] I. Peterson. Chinks in digital armor – exploiting faults
to break smart-card cryptosystems. Science News,
151(5):78–79, 1997.

[17] J.-J. Quisquater and D. Samyde. Eddy current for
magnetic analysis with active sensor. In Proceedings of
Esmart 2002 3rd edition. Nice, France, September
2002.

[18] W. Rankl and W. Effing. Smart Card Handbook. John
Wiley & Sons, 2 edition, 2000.

[19] T. SETI@home project. Current total statistics, June
28th 2002.

[20] A. Shamir. Method and apparatus for protecting
public key schemes from timing and fault attacks,
1999. US Patent No. 5,991,415, Nov. 23, 1999.

[21] S. Skorobogatov and R. Anderson. Optical fault
induction attacks. In Workshop on Cryptographic
Hardware and Embedded Systems 2002 (CHES 2002),
Hotel Sofitel, San Francisco Bay (Redwood City),
USA, August 13 - 15, 2002, 2002.

[22] S.-M. Yen and M. Joye. Checking before output may
not be enough against fault-based cryptanalysis. IEEE
Transactions on Computers, 49(9):967–970, September
2000.

[23] S.-M. Yen, S. Kim, S. Lim, and S. Moon. A
countermeasure against one physical cryptanalysis
may benefit another attack. In K. Kim, editor,
Information Security and Cryptology - ICISC 2001,
volume 2288 of Lecture Notes in Computer Science,
page 414 ff., 4th International Conference Seoul,
Korea, December 6-7, 2001. Proceedings, 2001.
Springer-Verlag.

[24] S.-M. Yen, S. Kim, S. Lim, and S. Moon. RSA
speedup with residue number system immune against
hardware fault cryptanalysis. In K. Kim, editor,
Information Security and Cryptology - ICISC 2001,
volume 2288 of Lecture Notes in Computer Science,
page 397 ff., 4th International Conference Seoul,
Korea, December 6-7, 2001. Proceedings, 2001.
Springer-Verlag. (journal version in IEEE Trans. on
Comp., April 2003).

APPENDIX

A. PROVING THAT ��� = � +
�

(�) � (��� � ���)

IS HARMLESS
Assume that an adversary attacks the CRT combination

S = Sp+X ·(Sq−Sp) mod Nt1t2 with X = pt1·((pt1)
−1 mod

qt2). X is assumed to be precomputed and stored on the
card. A random error induced into X will result in a faulty
value S′ instead of S:

S′

= Sp + X · (Sq − Sp) + e(X) · (Sq − Sp) mod Nt1t2

= S + e(X) · (Sq − Sp) mod Nt1t2,

with e(X) ∈ [−X, 2l(X) − 1 − X]. The additional term is
the induced error. The countermeasure of Algorithm 2 will
fail to detect this fault iff the addend is a multiple of both
t1 and t2, i.e. if t1 · t2|e(X) · (Sq − Sp) mod Nt1t2 because
both t1 and t2 are different primes. The latter property also
implies that at least one of the factors must be a multiple
of t1 and one (possibly the same) a multiple of t2.

As we consider the security independent from the adver-
sary’s choices for m, we first assume that neither t1 nor t2
divides (Sq − Sp). As e(X) is an equally distributed value
from a consecutive interval, and t1 and t2 may be seen as
independent values, the probability for t1|e(X) and t2|e(X)
is at most 1/(t1 · t2).

For the message dependent question whether any of the
primes ti divides (Sq − Sp), let Sq := c be fixed first (with
0 ≤ c < qt2). In this case, there are pt1 integers in [c−pt1 +
1, c]. Of these numbers, only multiples of t1 are counted.
Hence, there are at most b(pt1)/t1c = bpc many such inte-
gers. Therefore, the probability of getting such an integer is
≤ p · 1/(pt1) = 1/t1. If we now count the overall number of
possible integers for all choices of c, we determine

Pr[(Sq − Sp) = k · t1]

=

qt2−1�

c=0

Pr[(Sq − Sp) = k · t1|Sq = c] · Pr[Sq = c]

=

qt2−1�

c=0

Pr[(c − Sp) = k · t1 for some k] ·
1

qt2

≤
1

qt2
· qt2 ·

1

t1
=

1

t1
.

As the same consideration holds for t2, we have a maxi-
mum of 2/ min(t1, t2) messages where the probability that
a random error is not detected is significantly higher than
1/(t1 · t2).

B. UNDETECTABLE BYTE ERRORS
Similar to the analysis in Section 5.1, results for induced

byte faults according to the byte error fault models #2 and
#3 can be stated. This models an attack on a variable x
as f(x) = x + b · 2k with |b| ∈

�

28, 0 ≤ k < l(x) − 7.
All probabilities stated in the following will be over random
choices of errors e(x) = b · 2k with random b and k. Here, b
will always denote a random byte value, that can be either
positive or negative. The analysis of a byte error attack
is completely analogous to the analysis for random errors
presented in Section 5. The results of the analysis of byte
errors are shown in Table 2. The displayed results are all

better than the results for random errors as analyzed in
Section 5. This is not surprising, since the special structure
of the induced error, i.e. b < 28 eliminates some possible
attacks. These attacks require that the greatest common
divisor of b and ti − 1 is large, which is impossible for byte
errors. Although, the following two cases yield worse results,
because they cannot be based on Assumption 1:

• attack on the stored variable ��� 1
If a random byte fault is induced into pt1, such that pt1
is changed to pt1 + b ·2k, an undetectable error requires
that md div (pt1 + b · 2k) ≡ 0 mod t1.

• attack on � or the exponentiation’s intermedi-
ate variable
Any random byte fault induced during the exponentia-
tion that causes an intermediate value y of Algorithm
3 to be changed into y + b · 2k must fulfill the equation
b · 2k ≡ −2y mod t1 in order to induce an undetectable
error. For messages m ≡ 0 mod t1, all faults yield an
undetectable error.

Comment. Both cases described above require the ad-
versary to be able to construct malicious messages in
order to be practical. However, the adversary has no in-
formation about t1, which is needed to construct a ma-
licious message. Therefore, his best choice is to choose
random m for input. In this case, his success probabil-
ity is negligible.

The two special messages m = 0 and m = 1 need to be
excluded from the set of possible inputs. Here, the same
considerations as in Section 5 apply.

fault attack on probability of the attack

line 1 3/t1
line 2 3/t2
line 3 1/(t1 · t2)

lines 4 – 6 0 in our fault model

Table 2. Summarizing the success probabilities of a fault
attack adversary for byte faults

C. UNDETECTABLE BIT ERRORS
The analysis of bit errors is completely analogous to the

analysis in section 5. Here, the precise bit error fault model
#1 is considered, where a variable x is changed to f(x) =
x± 2k with 0 ≤ k < l(x). The results are shown in Table 3.
Note that similar to the results in Appendix B, attacks on
pt1 require that md div (pt1 ± 2k) ≡ 0 mod t1 and attacks
on m or the exponentiation’s intermediate variable require
that ±2k ≡ −2y mod t1 in order to induce undetectable er-
rors. An adversary cannot construct such messages unless
he knows ti. As these values are secret, his chance of suc-
cessfully choosing a random m that satisfies any of these
conditions is negligible.

fault attack on probability of the attack

line 1 3/t1
line 2 3/t2
line 3 1/(t1 · t2)

lines 4 – 6 0 in our fault model

Table 3. Summarizing the success probabilities of a fault
attack adversary for bit faults

