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Abstract. We present a new type of fault attacks on elliptic curve scalar
multiplications: Sign Change Attacks. These attacks exploit different num-
ber representations as they are often employed in modern cryptographic
applications. Previously, fault attacks on elliptic curves aimed to force a
device to output points which are on a cryptographically weak curve. Such
attacks can easily be defended against. Our attack produces points which
do not leave the curve and are not easily detected. The paper also presents a
revised scalar multiplication algorithm that provably protects against Sign
Change Attacks.
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1 Introduction

In 1997, Boneh, DeMillo and Lipton ([BDL01]) reported a new type of side channel
attack: fault attacks. They showed how to use errors in the computation of an RSA
signature to recover the secret key. Today, several different methods to purposely
induce faults into devices and memory structures have been reported (e.g., [AK96],
[SA02], [QS02]). As it is a quite natural idea to extend the results to other group
based cryptosystems, Biel, Meyer and Müller showed in [BMM00] how to exploit
errors in elliptic curve scalar multiplications. This result has been refined by Ciet
and Joye in [CJ03].

All fault attacks on elliptic curve cryptosystems presented so far ([BMM00],
[CJ03]) tried to induce faults into the computation of a scalar multiplication kP
on the elliptic curve E such that the computation no longer takes place on the
original curve E. By changing the base point P or an intermediate point ran-
domly, by changing the curve parameters of E, or by changing the defining field,
the operations leave the group defined by the elliptic curve E. Instead the scalar
multiplication is done on a different curve Ẽ and/or with a different base point
P̃ . Then the so-called pseudo-addition can be used to recover the secret key if the
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point k · P̃ on the new curve Ẽ allows to solve the discrete logarithm problem at
least partially. The disadvantage (or advantage) of the proposed attacks is that
there is an obvious and efficient countermeasure: simply check whether the result
is a point on the original curve E or not. Transient faults are easily detected and a
faulty output is prevented. Permanent faults can be detected if the curve param-
eters in memory are stored with redundant information that allows to verify data
integrity, e.g., CRC sums.

In this paper, we present a new type of fault attacks on elliptic curve scalar
multiplication, Sign Change Attacks. Our attack does not change the original curve
E and works with points on the curve E. We show how sign changes of intermediate
points can be used to recover the secret scalar factor. Our attack leads to a faulty
output that is a valid point on the original elliptic curve. Then we can use an
algorithm similar to the one presented for RSA in [BDL01] to recover the secret
scalar factor in expected polynomial time. We present our attack for the NAF-
based left-to-right repeated doubling algorithm, because here Sign Change Faults
seem to be easier to realize than for other repeated doubling variants (see Section
5). The non-adjacent form (NAF) is a unique signed digit representation of an
integer using the digits {−1, 0, 1}, such that no two adjacent digits are both non-
zero. However, we stress the fact that the attack can also be used against other
scalar multiplication algorithms, e.g., the right-to-left version, binary expansion
based repeated doubling, and Montgomery’s binary method ([Mon87]) if the y-
coordinate is used.

Our attacks show that the basic ideas of [BDL01] carry over to elliptic curve
cryptosystems as well. Clearly, the countermeasures described above, namely check-
ing whether the result lies on the original curve, fail to detect Sign Change Attacks.
In fact, they even support Sign Change Attacks by holding back a great variety
of faulty results if they have been caused by errors other than Sign Change Faults
or by imprecise Sign Change Faults. This allows an adversary to use a less precise
attack setting for Sign Change Attacks (see Section 5).

We also present a revised version of the basic scalar multiplication algorithm for
elliptic curves that is secure against Sign Change Attacks in Section 4. Our coun-
termeasure is motivated by a similar countermeasure by Shamir against attacks
on CRT-RSA exponentiations ([Sha99]). We use the original elliptic curve together
with a second small curve, which allows to define a larger ”combined curve”, where
the desired scalar multiplication is performed. Using this combined curve, one can
check the final result efficiently. We show that this new algorithm is secure against
Sign Change Attacks and previously reported attacks. Our analysis proves security
against these attacks only, it does not provide a general security proof or secu-
rity reduction. Research on fault attacks has not yet established a mathematical
framework to allow general security claims.

One can also use randomization schemes to counteract a differential fault at-
tack with Sign Change Faults. However, smartcard certification authorities often
require that algorithms are secure against fault attacks even without randomiza-
tion. Moreover, randomization schemes that only randomize the base point are not
guaranteed to counteract an SCA, e.g., Coron’s third countermeasure in [Cor99,
§5.3] or the proposed elliptic curve isomorphism in [JT01b, §4.1].

Alternatively, some scalar multiplication algorithms like Montgomery’s Binary
Method ([Mon87]) can be used without the y-coordinate. Therefore, these methods



cannot be attacked by a Sign Change Attack. However, patent issues prevent the
usage of Montgomery’s Binary Method and endorse the widespread use of variants
of the standard repeated doubling algorithm, mostly based on the NAF. All these
standard repeated doubling algorithms are secured by our countermeasure.

The paper is organized as follows: After briefly recalling the basics of elliptic
curve arithmetic, we present the Sign Change Attack on Elliptic Curve Scalar
Multiplication in Section 3. Section 4 is devoted to presentation and analysis of
the proposed countermeasure. In Section 5, we discuss methods to carry out Sign
Change Faults in practice. Section 6 concludes the paper.

2 Elliptic Curve Cryptography

An elliptic curve over a field Fp with p > 3 is defined as the set of points (x : y :
z) ∈ F
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p that satisfy the projective Weierstraß equation

y2z ≡ x3 + Axz2 + Bz3 mod p. (1)

Moreover, O denotes the point at infinity (0 : 1 : 0). For coordinates of a point
P on a given curve E we write P [x] to denote the x-coordinate and so forth. The
points of E form an additive group. The elliptic curve E as well as points on E
can be expressed in a variety of coordinate representations, e.g., affine coordinates,
projective coordinates, Jacobian coordinates, Hessian coordinates or mixed coordi-
nates. This paper concentrates on projective representations as defined above. As
we do not need to consider the projective addition formula in detail, we refer the
reader to the literature for a description of the actual computation of the sum of
two projective points. A nice overview of several addition formulas can be found in
[CMO98].
In cryptosystems based on elliptic curves, e.g., the ElGamal cryptosystem and
its variants, a crucial computation is the scalar multiplication of a public base
point P with a secret scalar factor k. Attacks aim to recover the value k. Several
implementations of fast scalar multiplication algorithms have been presented in
the literature. In Algorithm 1, we present a left-to-right version of the well known
repeated doubling algorithm to present our attack. Algorithm 1 already implements
a standard countermeasure against random fault attacks in Line 5. This will be
further explained in the next section.

Algorithm 1 (NAF-based Repeated Doubling on an Elliptic Curve E)
Input: A point P on E, and a secret key 1 < k < ord(P ) in non-adjacent form,

where n denotes the binary length of k, i.e. the number of bits of k
Output: kP on E
# init
1 Set Q := O

# main
2 For i from n − 1 downto 0 do
3 Set Q := 2Q
4 If ki = 1 then set Q := Q + P else if ki = −1 then set Q := Q − P
5 If Q is not on E then set Q := O
6 Output Q



In Algorithm 1, we use the non-adjacent form (NAF) representation of the
secret scalar k. The performance of most variants of the the classical repeated
doubling algorithm will improve if the scalar k is recoded into non-adjacent form
(NAF). The 2-NAF uses digits from {−1, 0, 1} and ensures that no two adjacent
digits are non-zero. It achieves a higher ratio of zeros to non-zeros, which reduces
the number of additions/subtractions in the resulting double-and-add-or-subtract
method. For details on the NAF, see [Boo51], [Rei60], [JY00], or [OT04]. Using the
NAF, subtractions are introduced. Since negating a point on an elliptic curve simply
means to change the sign of the y-coordinate, subtractions are cheap operations on
elliptic curves. The savings using repeated doubling based on the NAF are 11.11%
on average (see [MO90]).

As shown in the full version of this paper, our attack also applies to other
scalar multiplication algorithms, e.g., the right-to-left repeated doubling version or
Montgomery’s binary method where the y-coordinate is used.

3 The Sign Change Attack on Elliptic Curve Repeated

Doubling

Previous fault attacks on elliptic curve cryptosystems usually assume that the
attack changes the elliptic curve E to some different curve Ẽ ([BMM00], [CJ03]).
This happens if an attack changes the coordinates of a point P to some other value
P̃ . The chance that the resulting point P̃ is a valid point on the same curve E
is very low (depending on the fault model). However, scalar multiplication with a
faulty base point P̃ can be interpreted as an operation on a different curve Ẽ. The
different curve is defined by the same finite field and the original curve parameter
A, but with a different parameter B̃. This is possible, because the curve parameter
B from the Weierstraß equation (1) is not used in the addition formula. B̃ can
easily be computed using the faulty point P̃ .

These attacks succeed in recovering the secret scalar factor k of kP̃ if the discrete
logarithm problem is solvable for kP̃ on Ẽ. However, very simple countermeasures
defend against these attacks. First, the curve parameters are validated to counteract
permanent faults in memory. Then, the result of the scalar multiplication is checked
to be a valid point on the curve. If not, an error output results ([CJ03]). The same
attacks apply to faults in the curve parameter A or the defining field Fp. To protect
against these attacks, we incorporated the proposed countermeasure in Line 5 of
Algorithm 1.

In this section, we present a fault attack that uses a faulty point on the original
curve, which cannot be detected by the aforementioned countermeasures. The basic
idea of our attack is to induce a fault into a point such that the sign of the point
changes, i.e., such that the sign of the y-coordinate of a point on E is flipped.
Below, we will define the detailed fault model. Section 5 will investigate how such
faults can be induced. It will be shown that these attacks are practical.

Starting from Algorithm 1, we will use indices to distinguish between the vari-
able values in the main loop. We will denote the correct final result by Q and a
faulty final result by Q̃. To avoid ambiguity when referring to intermediate values,
we rewrite Lines 3 and 4 as



3 Set Q′
i := 2Qi+1

4 If ki = 1 then set Qi := Q′
i + P

If ki = 1 else if ki = −1 then set Qi := Q′
i − P

If ki = 1 else if ki = −1 else set Qi := Q′
i

Our Fault Model. In our fault model we assume that an adversary is able
to induce a Sign Change Fault (SCF) on a specific elliptic curve point used in
Algorithm 1. A Sign Change Fault changes the sign of the y-coordinate of an
attacked point, e.g., Q′

i on E, such that Q′
i 7→ −Q′

i. The adversary does not know
in which iteration of the loop the error occurs. However, we assume that the loop
iteration determined by i is chosen i.i.d. according to the uniform distribution.
Later in Section 5, we will discuss methods to induce such Sign Change Faults in
practice.

Most elliptic curves defined over prime fields, which are recommended by current
standards such as ANSI, IEEE, and SEC [IT03], have prime order, i.e., they contain
a prime number of points. Therefore, we will assume this property for our curves
as well. This fact implies that any point P 6= O on E must have the same (large)
prime order. We will use this assumption frequently.

We state our attack using an algorithm similar to the attack presented by
Boneh, DeMillo and Lipton in [BDL01] on RSA. Similar to [BDL01], we need to
be able to mount c = (n/m) log(2n) attacks on the same input (P, k, E) to recover
k with probability at least 1/2. Here, m is a parameter that will be defined later.
Differently from the attack in [BDL01], we need a correct result Q to verify our test
cases — which is indeed a plausible assumption. We use the following result from
[BDL01] to bound the number of necessary faulty outputs needed by our attack.

Fact 2 (Number of Necessary Attacks) Let x = (x1, x2, . . . , xn) ∈ {0, 1}n

and let M be the set of all contiguous intervals of length m < n in x. If c =
(n/m) · log(2n) bits of x are chosen uniformly independently at random, then the

probability that each interval in M contains at least one chosen bit is at least 1/2.

3.1 Sign Change Attack on Q′

i
in Line 4.

All of the variables in Lines 3 and 4 can be successfully attacked with a Sign Change
Attack (SCA). In the following, we present the attack on the variable Q′

i in Line 4
during some loop iteration 0 ≤ i ≤ n − 1. Afterwards, we will briefly describe how
to modify the attack for the other variables.

The basic idea of our attack algorithm is to recover the bits of k in pieces of
1 ≤ r ≤ m bits. Here, m is chosen to reflect a trade-off between the number of
necessary faulty results derived from Fact 2 and the approximate amount 2m of
offline work. Throughout this paper, we assume that 2m � #E. To motivate the
algorithm, assume that a faulty value Q̃ is given that resulted from an SCF in Q′

i.
We have

Q̃ = −2iQ′
i +

i∑

j=0

kj · 2j · P = −2i

n−1∑

j=i+1

kj2
j−iP +

i∑

j=0

kj · 2j · P



= −Q + 2Li(k) with Li(k) :=

i∑

j=0

kj2
jP (2)

= Q − 2Hi+1(k) with Hi+1(k) :=
n−1∑

j=i+1

kj2
jP = Q − Li(k). (3)

On the right hand side of Equation (2), the only unknown part is Li(k), which
defines a multiple of P . If only a small number of the signed bits k0, k1, . . . , ki used
in that sum is unknown, these bits can be guessed and verified using Equation (2).
This allows to recover the signed bits of k starting from the LSBs. Moreover, based
on Equation (3) it is also possible to recover the signed bits of k starting from the
MSBs. As we assume that errors are induced uniformly at random, an adversary
may choose freely between these two recovery strategies. In the following, we will
use the LSB version based on Equation (2). We assume that both Q and Q̃ are
known. The complete attack is stated as the following algorithm.

Algorithm 3 (The Sign Change Attack on Q′

i
)

Input: Access to Algorithm 1, n the length of the secret key k > 0 in non-adjacent

form, Q = kP the correct result, m a parameter for acceptable amount of

offline work.

Output: k with probability at least 1/2.

# Phase 1: Collect Faulty Outputs

1 Set c := (n/m) · log(2n)
2 Create c faulty outputs of Algorithm 1 by inducing a SCF in Q′

i for random values
of i.

3 Collect the set S = {Q̃ | Q̃ 6= Q is a faulty output of Algorithm 1 on input P}.
# Phase 2: Inductive Retrieval of Secret Key Bits

4 Set s := −1 indicating the number s + 1 of known bits of k.
5 While (s < n − 1) do

# Compute the known LSB part.

6 Set L := 2
∑s

j=0 kj2
jP

# Try all possible bit patterns with length r ≤ m.

7 For all lengths r = 1, 2, . . .m do
8 For all valid NAF-patterns x = (xs+1, xs+2, . . . , xs+r) with xs+r 6= 0 do

# Compute the test candidate Tx

9 Set Tx := L + 2
∑s+r

j=s+1 xj2
jP

# Verification Step: Verify the test candidate using Equation (2)

10 for all Q̃ ∈ S do

11 if
(

Tx − Q̃
)

= Q then

12 conclude that ks+1 = xs+1, ks+2 = xs+2, . . . , ks+r = xs+r,
13 set s := s + r, and continue at Line 5
# Handle a Zero Block Failure

14 If no test candidate satisfies the verification step, then
15 assume that ks+1 = 0 and set s := s + 1.
16 Verify Q = kP. If this fails then output ”failure”.
17 Output k



Comment. Algorithm 3 has been abbreviated for clarity in two minor details. On
the one hand, the highest iteration that suffered a SCF in Line 2 of Algorithm 3
needs not be the last iteration n−1. Let j be the maximal i such that the value Q′

i

has been attacked. Algorithm 3 only recovers bits of k up to iteration j. Following
Fact 2, we assume a ”lucky case”, which means that we assume that every interval
of length m was targeted by at least one SCF. This only guarantees that j ≥ n−m.
Hence, the m−1 most significant bits may not be recovered. However, up to m−1
missing bits can easily be recovered by exhaustive search if m is small enough. If
this fails, the adversary comes to the same conclusion as suggested in Line 16: the
guessed bits must be wrong and the attack has failed.

Furthermore, it is clear that given n as the length of the NAF of k, Algorithm
3 does not need to test patterns whenever s+ r ≥ n. Note that s indicates that the
s + 1 least significant bits k0, k1, . . . , ks are known. In fact, we may assume that
the most significant bit of k is kn−1 = 1, otherwise n cannot be uniquely defined.
Therefore, we may assume w.l.o.g. that s + r < n− 1. Note that we assume k > 0.
We also assume that (k0, k1, . . . , ks, xs+1, . . . , xs+r) is always in valid NAF.

We will prove the success of Algorithm 3 in two lemmas. First, we will show
that only a correct guess for the pattern of k can satisfy the verification step in
Line 11. Then, we will show that Algorithm 3 will always correctly recover at least
the next unknown bit of k. The second result is based on the assumption that each
contiguous interval of m bits was targeted by at least one Sign Change Fault. This
represents the ”lucky case” of Fact 2. Before stating the results, we introduce Zero
Block Failures.

Definition 4 (Zero Block Failure) Assume that Algorithm 3 already recovered

the s + 1 least significant signed bits k0, k1, . . . , ks of k. If the signed bits ks+1,
ks+2, . . . , ks+r are all zero and all Sign Change Faults that happened in iterations

s + 1, . . . , s + m really occurred in the first r iterations s + 1, s + 2, . . . , s + r, the

situation is called a Zero Block Failure.

A Zero Block Failure is named after the fact that errors in a block of zeros will
not be detected as errors within that block. Equation (2) shows that for any s, Ls(k)
= Ls+1(k) = . . . = Ls+r(k) for all sequences ks+1 = 0, ks+2 = 0, . . . , ks+r = 0. In
this case, the values Q̃1 = −Q + 2Ls(k) and Q̃2 = −Q + 2Ls+r(k) are equal.
Therefore, given Q̃ = −Q + 2Ls(k), Algorithm 3 cannot determine how many zero
bits — if any — follow ks. Hence, tailing zeros must be neglected, because their
number cannot be determined correctly. This is the reason why Algorithm 3 only
tests patterns x which end in ±1 in Line 8. However, the fact that tailing zeros
do not change the value of Q̃ allows us to write Q̃ = −Q + 2Li(k) with ki 6= 0
for some unknown i if Q̃ 6= −Q. Moreover, if it is known that Q̃ = −Q + 2Ls(k),
we may specify i in greater detail. In fact, we have Q̃ = −Q + 2Li(k) with i :=
max{j | kj 6= 0 ∧ j ≤ s}. The case where Q̃ = −Q, i.e., when the maximum does
not exist, can be represented by choosing i = −1. This simplification will be used
in the following two lemmas.

First, we will investigate the case where a test pattern x satisfies the verification
step. This allows Algorithm 3 to recover the next r bits of k.



Lemma 5 (No False Positives) If Algorithm 3 computes a test bit pattern x
such that Tx satisfies the verification step in Line 11 for some Q̃ ∈ S, then x is the

correct bit pattern.

Proof. Assume that the verification step is satisfied for a given test bit pattern
x = (xs+1, . . . , xs+r) with 1 ≤ r ≤ m and xs+r 6= 0, x in non-adjacent form.
We assume that we have a false positive, i.e., the pattern x is different from the
corresponding pattern of k, namely ks+1, ks+2, . . . , ks+r . Hence, there must be a
faulty result Q̃ ∈ S that satisfies the verification step in Line 11 together with
this x. The verification step in Line 11 yields O = Tx − Q̃ − Q. We use Line 9 of
Algorithm 3 to express Tx and Equation (2) to express Q̃ in detail. As explained
above, we may assume that Q̃ = −Q + 2Li(k) with ki 6= 0. We have

O =



2 ·
s∑

j=0

kj2
jP + 2 ·

s+r∑

j=s+1

xj2
jP



 −



−Q + 2 ·
i∑

j=0

kj2
jP



 − Q

= 2 ·










s∑

j=0

kj2
j +

s+r∑

j=s+1

xj2
j

︸ ︷︷ ︸

R+

−
i∑

j=0

kj2
j

︸ ︷︷ ︸

R
−










· P = Rx · P (4)

where Rx = 2 ·
max(i,s+r)

∑

j=0

yj2
j and yj =







0 if j ≤ min(i, s)
kj if i < j ≤ s
(xj − kj) if s < j ≤ min(i, s + r)
xj if max(i, s) < j ≤ s + r
−kj if s + r < j ≤ i.

Equation (4) implies that either Rx = 0 or Rx is a multiple of the order of P .
Case 1. Assume that Rx = 0. This is easily shown to be impossible. It implies
that R+ = R−, i.e., both sums are valid NAF representations of the same number.
As the NAF is unique, this implies that both representations are equal. Hence, all
digits are equal in contradiction to the assumption that there is as least one xj 6= kj

with s + 1 ≤ j ≤ s + r.
Case 2. Assume that Rx 6= 0 is a multiple of the order of P on E. We know that
ord(P ) = #E � 2m as #E is prime. Therefore, #E divides Rx. If i = −1, i.e.,
Q̃ = −Q, we have Rx · P = Tx. As we may assume that s + r < n− 1 as explained
above, we have Rx < #E. This contradicts our assumption that #E divides Rx.
If 0 ≤ i ≤ s, we have Rx = 2i+2 · R′

x with |R′
x| < 2s+r−i < 2n−1−i ≤ k < #E.

Therefore, #E cannot divide Rx. If s + 1 ≤ i ≤ s + r, we have Rx = 2s+2 · R′
x

with |R′
x| < 2m+1. Again, #E cannot divide Rx. For s + r < i < n − 1, we have

Rx = 2s+2 · R′
x with |R′

x| < 2i−s+1 ≤ 2n−2−s+1 ≤ 2n−1 ≤ k < #E. Therefore,
#E cannot divide Rx. The last case, i = n − 1, is impossible. It would imply
that Q′

i = O has been attacked, where no Sign Change Fault can be induced, i.e.,
Q̃ = Q. However, we explicitely prevent values Q̃ = Q from being members of the
set S in Line 3 of Algorithm 3. Therefore, Case 2 is impossible.i �

Lemma 4 has shown that if Algorithm 3 has found a test pattern x, it correctly
represents the corresponding bit pattern of k. This result can be used to show that



whether Algorithm 3 find a test pattern x or not, it always recovers the correct
next bits of k.

Lemma 6 (Correct Recovery) We assume that the bits k0, k1, . . . , ks of k have

already been computed by Algorithm 3. Furthermore, we assume that a Sign Change

Fault was induced into the intermediate value Q′
i in Line 4 of Algorithm 1 for some

i ∈ {s + 1, s + 2, . . . , s + m}.
Then, in order to recover the next signed bit ks+1, Algorithm 3 will be in one

of two cases: In the first case, it finds a test bit pattern x = (xs+1, xs+2, . . . , xs+r),
r ≤ m, that satisfies the verification step in Line 11 and concludes that kj = xj for

all s + 1 ≤ j ≤ s + r in Line 12. In the second case, it detects a Zero Block Failure

and concludes that ks+1 = 0 in Line 15. In both cases, the conclusion is correct

and between 1 and r bits of k are recovered correctly.

Proof. We will investigate the two cases of the lemma separately.
Case 1. Assume that Algorithm 3 finds a test bit pattern x = (xs+1, xs+2, . . . ,
xs+r) that satisfies the verification step in Line 11. According to Lemma 5, there
cannot be a false positive and x correctly represents the bit pattern of k. Therefore,
the conclusion kj = xj for all s + 1 ≤ j ≤ s + r is correct.
Case 2. Assume that Algorithm 3 does not find a test bit pattern x that satisfies
the verification step. In this case, a Zero Block Failure is conjectured by Algorithm
3 and it sets ks+1 = 0.

We assume that this conjecture is wrong. We know by the assumption in the
lemma that at least one of the iterations s + 1, s + 2, . . . , s + m was targeted by
a Sign Change Fault. Let Q̃ ∈ S be the faulty output of such an attack, i.e.,
Q̃ = −Q + 2Li(k) with s + 1 ≤ i ≤ s + m according to Equation (2). If the
conjecture that we have a Zero Block Failure is wrong, we know by Definition 4
that we may choose Q̃ such that at least one of the bits ks+1, ks+2, . . . , ki is not
zero. This implies that we may write Q̃ = −Q + 2Lw(k) with w := max{j | kj 6=
0 ∧ s + 1 ≤ j ≤ i} as explained above. Now it is easy to see that the test bit
pattern 0 6= x = (ks+1, ks+2, . . . , kw−1, kw) of length 1 ≤ r ≤ m satisfies the
verification step. This means that the value Tx defined in Line 9 of Algorithm 3
correctly represents 2Lw(k). Therefore, a valid test pattern x exists and Algorithm
3 will find a value for ks+1 in Line 12. Therefore, the assumption that a Zero Block
Failure is detected incorrectly must be wrong.i �

The results of the previous lemmas are summarized in the following theorem.

Theorem 7 (Success of the Proposed Sign Change Attack) Algorithm 3

succeeds to recover the secret scalar multiple k of bit length n in time O(n·3m ·c·M)
with probability at least 1/2. Here, c = (n/m) · log(2n) and M is the maximal cost

of a full scalar multiplication or a scalar multiplication including the induction of

a Sign Change Fault.

Proof. The results of Lemma 5 and Lemma 6 rely on the assumption that every
contiguous interval of length m was targeted by at least one Sign Change Fault
in Line 2 of Algorithm 3. According to Fact 2, this assumption holds with proba-
bility 1/2 if c = (n/m) · log(2n) faulty results are collected. This requires c scalar
multiplications with the ability to induce a SCF.



According to Lemma 6, every iteration of the while loop of Algorithm 3 recovers
at least a single bit of the secret scalar k. Therefore, at most n iterations are needed.
The worst case occurs when k = 2n−1 and no SCF was induced into Qn−1 while
Algorithm 3 created the set of faulty outputs in Line 2. As all bits but the most
significant are zero, only Zero Block Failures would occur, allowing to recover only
a single bit in each iteration of Algorithm 3.

In a single iteration, Algorithm 3 tests clearly less than 3m test bit patterns,
since every pattern consist of the three digits −1, 0, and 1. Every test bit pattern
x yields a test candidate Tx using one scalar multiplication in Line 9. Obviously,
some speedups could be applied, e.g., storing Tx allows to compute a new Tx using
a single addition. Note that the precomputation of L in Line 6 already represents
a speed up. For each test candidate Tx, at most c point additions and comparisons
need to be done in Line 11. To present a short result, we simply treat the addition
and comparison cost of Line 11 as a full scalar multiplication. If all possible bits of k
have been recovered, a last full scalar multiplication must be applied to differentiate
between Zero Block Failures and a real failure.

Altogether, the worst case running time of Algorithm 3 is O((c+n3mc+1) ·M)
where c = (n/m) · log(2n) and M is the maximal cost of a full scalar multiplication
or a scalar multiplication including the induction of a Sign Change Fault.i �

3.2 Other Attacks

The basic idea of Algorithm 3 can also be used for Sign Change Attacks on all
other variables used inside the loop in Algorithm 1. An attack on Qi+1 in Line 3
yields the same algorithm as an attack on Q′

i in Line 3 or 4. An attack on Qi in
Line 4 yields Q̃ = 2Li−1(k) − Q, therefore, Algorithm 3 can also be used for this
case.

An attack on the variable Qi+1 in Line 3 of Algorithm 1 can be used for another
SCA if it is possible to attack just one of the two copies of Qi+1. In this case, an
SCF induced into Qi+1 yields Q′

i = O and Q̃ = Li(k). Algorithm 3 can be used
to recover the bits of k starting from the LSBs with a modified verification step
Q̃ − Tx = O. This attack does not need to know a correct result Q.

Another attack can be mounted if it is possible to change the sign of the base
point P in Line 4. In this case, we have Q̃ = Q − 2ki2

iP if the error is transient.
Algorithm 3 can be used if the verification step is modified accordingly. Moreover,
a larger number of faulty values must be collected as these SCFs require a block
length of m = 1, which increases the cost significantly. If the error in P is perma-
nent, we have Q̃ = Q−2Li(k). Algorithm 3 can also be used for this case. However,
attacks on P should be considered much less probable than attacks on the other
variables. As P is the base point, it is stored in long term memory. Permanent
errors could therefore easily be detected by rechecking.

As shown in the full paper, the ideas presented in this section carry over to
the NAF-based right-to-left repeated squaring version and to the binary expansion
based versions. Sign Change Attacks can also be used against Montgomery’s binary
method [Mon87] if the y-coordinate is used.



4 Countermeasures

Clearly, the countermeasure against the attacks proposed in [BMM00] and [CJ03],
namely a test if the final result is on the original curve, does not counteract our
attacks. The faulty values are bound to be on the curve. Checking whether a point
lies on a given curve even helps an attacker to detect and eliminate unsuccessful Sign
Change Faults. A quite natural countermeasure against Sign Change Faults, which
change the sign of the y-coordinate of an intermediate point, is to use Montgomery’s
binary method, where the y-coordinate is not needed, cf. [Mon87]. However, several
patents prevent its widespread application and endorse the use of other variants
of repeated doubling. Additionally, some variants of the ElGamal cryptosystem
embed messages in both coordinates (cf. [GG99, § 20.6]) and may wish to use a
scalar multiplication method, where both coordinates are computed simultanously.
As a consequence, variants of the well-known repeated doubling algorithm, mostly
based on the non-adjacent form of the secret scalar factor, are widely employed in
modern elliptic curve based systems.

Additionally, as explained in the introduction, randomization could be used to
protect against Sign Change Attacks. However, a variety of randomization strate-
gies do not thwart our attack. As an alternative countermeasure against Sign
Change Attacks (SCA), we propose a modified scalar multiplication algorithm pre-
sented as Algorithm 8. It adds little overhead at the benefit of checking the cor-
rectness of the final result. Moreover, it can be based on any scalar multiplication
algorithm which does not need field divisions. We will present our countermea-
sure in the remainder of this section and analyze it using the NAF-based version
presented as Algorithm 1. The countermeasure has been motivated by Shamir’s
countermeasure against attacks on CRT-RSA exponentiations [Sha99].

We first explain the basic idea of the countermeasure. For the modified algo-
rithm, we assume that the curve E = Ep is defined over a prime field Fp, i.e., we
have Ep := E(Fp). Furthermore, we choose a small prime t of about 60 – 80 bits to
form the ”small” curve Et := E(Ft). We now want to compute the scalar multiple
kP in a way such that the result can easily be checked on Et but also yields the
correct result on Ep. To do so, we define an elliptic curve Ept over the ring Zpt.
This curve Ept is defined with parameters Apt and Bpt such that Apt ≡ Ap mod p,
Apt ≡ At mod t and Bpt ≡ Bp mod p, Bpt ≡ Bt mod t. Here, Ap and At denote
the A-parameters and Bp and Bt denote the B-parameters in Equation (1) of Ep

and Et respectively. Both Apt and Bpt can be easily computed using the Chinese
Remainder Theorem, although Bpt is not needed in the addition formula. As the
base point Pp := P is not guaranteed to exist on Et, we also choose a base point Pt

on Et and use the combined point Ppt as the base point for the scalar multiplication
in Ept. Here, Ppt is computed using the Chinese Remainder Theorem in the same
manner as Apt and Bpt above, i.e. Ppt[u] ≡ Pp[u] mod p and Ppt[u] ≡ Pt[u] mod t
for all u ∈ {x, y, z}. We will refer to Ept as the ”combined curve” of Ep and Et.
Computing Q = kPpt on Ept allows to verify the result on the small curve Et.



Algorithm 8 (Sign Change Attack Secure Scalar Multiplication)
Input: A point P on Ep, and a secret key 1 < k < ord(P ), where n denotes the

binary length of k, i.e., the number of bits of k
Output: kP on Ep

# offline initialization (i.e., at production time)
1 Choose a prime t and an elliptic curve Et

2 Determine the combined curve Ept

# main part
3 Set Q := kPpt on Ept (e.g., using Algorithm 1)
4 Set R := kPt on Et (e.g., using Algorithm 1)
5 If R 6= Q mod t then output ”failure”.
6 Else output Q on Ep

Scalar Multiplication is used twice, once in Line 3 and once in Line 4. For the
algorithm used, we assume that it features a check of the final result that returns
O if the result is not a valid point on the curve (e.g., Line 5 of Algorithm 1). In
the case where Ept is used, we assume for simplicity that this check is performed
both modulo p and modulo t, i.e., both on Ep and on Et.
On the Choice of Ep and Et. For the security of our countermeasure against
Sign Change Attacks, we assume that both Ep and Et have prime order. Both
curves are chosen independently, which allows to use recommended curves (e.g., by
[SEC00]) for Ep. The security analysis will show that the security depends on the
order of Pt on Et. This does not require Et to be secret. Moreover, it also does not
require #Et to be prime. It is sufficient to choose a curve Et and a point Pt such
that the order of Pt on Et is large. We will specify a minimal size for the order of
Pt on Et later. Finding such a curve Et is feasible as shown in [BSS99, §VI.5] or
[Kob91]. We also present a detailed analysis for this task in Appendix A.

4.1 Analysis of the Countermeasure.

We first show that Algorithm 8 computes the correct result if no error occurs.
Algorithm 8 uses Et to check the result of the scalar multiplication from Line 3.
If Q = kP on Ept, then Q = kP on Et as well. This is evident from modular
arithmetic. Note that any of the three exceptional cases in the addition formula
(P1, P2 = O or P1 = −P2) can only occur if any of the intermediate results or the
final result is equal to O. However, Qi = O on Ept implies that Qi = O on both
Ep and Et. As k < #Ep, this may never happen. Hence, if no error occurred, Q is
a valid point on both Ep and Et. Given this fact, it is straightforward to see that
R = Q on Et.

It remains to show that the proposed algorithm is secure against known Fault
Attacks. For our analysis, we assume that Algorithm 1 has been chosen as the scalar
multiplication algorithm, although the result holds for other scalar multiplication
algorithms as well. To counteract fault attacks with random faults induced into any
of the parameters used in Line 3 of Algorithm 8, we implement the countermeasure
proposed by [BMM00] and [CJ03]. It requires checking whether the result of a
scalar multiplication is a valid point on the original curve before returning a value.
This check has been included as an integral part of Algorithm 1. Therefore, we
concentrate on security against Sign Change Attacks on Line 3 of Algorithm 8



only. Our analysis proves security against Sign Change Faults only, it does not
provide a general security proof or security reduction. Research on fault attacks
has not yet established a mathematical framework to allow general security claims.

We use the same fault model as in Section 3, i.e., a Sign Change Fault can be
induced in any intermediate variable used by the scalar multiplication Q = kP
on Ept. Sign Change Faults can only be induced in points of elliptic curves, the
scalar k cannot be attacked. Furthermore, we assume that only a single SCF can
be induced during each computation of kP . We do not consider multiple attacks,
as only correlated attacks in the same run of Algorithm 8 would yield an advantage
for an adversary. However, such attacks are not a realistic scenario. The adversary
can target a specific variable, e.g., Q′

i, but he cannot target a specific iteration i. As
we are interested to show that a faulty value is returned with negligible probability,
we only need to investigate Sign Change Attacks on the computation in Line 3 of
Algorithm 8. Attacks in Line 4 cannot yield a faulty output as Q is not changed
by Line 4. We first investigate the basic requirement for an error to be undetected
by the countermeasure in Line 5.

Lemma 9 (Undetectable Sign Change Faults) Let Q = kPpt be the correct

result of the scalar multiplication in Line 3 of Algorithm 8 and let Q̃ = Q+κi·P 6= Q
be a faulty result from an attack on Line 3. Let rt := #Et be the group order of

Et, assumed to be prime. The faulty result Q̃ passes by the detection mechanism in

Line 5, iff rt | κi.

Proof. Let R and Q denote the variables used in Algorithm 8. If rt | κi, we have
κiP = O on Et. Therefore, the test R = Q in Line 5 of Algorithm 8 yields kPt =
Q+O on Et. As the correct result Q satisfies Q = kPt on Et, this would not trigger
a ”failure” output and the faulty value Q̃ would be returned. As Q̃ 6= Q on Ept is

assumed, we also have Q̃ 6= Q on Ep. This case results in a faulty output.

If rt 6 | κi, we must show that kPt 6= Q̃ on Et. We know that for the correct
value Q, it holds that R = Q on Et. If rt 6 | κi, we have κiP 6= O on Et because rt

is the prime group order. Therefore, the order of P is rt as well. Consequently, we
have R 6= Q = Q̃ on Et and the security alert in Line 5 is triggered.i �

Lemma 10 (Number of Undetectable Sign Change Faults) Let rt be the

group order of Et, assumed to be prime. Let m be the blocksize used in Algorithm

3. Then a Sign Change Attack on Algorithm 8 needs a blocksize m ≥ blog(rt)c to be

successful. Moreover, at most (n − 1)/ blog(rt)c many undetectable faulty outputs

exist.

Proof. Assume that a Sign Change Fault was induced into Q′
i for some i, resulting

in a faulty output Q̃1. By Equation (3), we have

Q̃1 = Q − 2Hi+1(k) = Q + κiP where κi := −2i+2
n−1∑

j=i+1

kj2
j−i−1.

We further assume that rt | κi, i.e., Q̃1 has not been detected as a faulty value
according to Lemma 9. We now consider another faulty output Q̃2 6= Q̃1 collected
by Algorithm 3. Let u 6= i denote the fault position, i.e., Q̃2 = Q + κuP .



We claim that for all u with |u− i| ≤ blog(rt)c, u− i 6= 0, it holds that rt 6 | κu.
We consider the two cases u < i and u > i. For u < i, we have

κu = −2u+2
n−1∑

j=u+1

kj2
j−u−1 = −2i+2

n−1∑

j=i+1

kj2
j−i−1 − 2u+2

i∑

j=u+1

kj2
j−u−1

= κi − 2u+2 · σu, where σu :=

i∑

j=u+1

kj2
j−u−1, (5)

and for u > i, we have

κu = −2u+2
n−1∑

j=u+1

kj2
j−u−1 = κi + 2i+2 · ρu, where ρu :=

u∑

j=i+1

kj2
j−i−1. (6)

The value Q̃2 is only output if it is an undetectable fault that bypassed Line 5
of Algorithm 8. According to Lemma 9, this requires that rt | κu. As we assume
that rt | κi, we need to analyze the case that rt |σu and rt | ρu respectively. We first
investigate σu. Here, we have two cases: Either σu = 0 or σu > 0 over the integers.
If σu = 0 over the integers, we have κu = κi and Q̃1 = Q̃2. As this contradicts
our assumption that Q̃1 6= Q̃2, we may assume that σu is not equal to 0 over the
integers. If the sum in Equation (5) is not equal to 0 over the integers, it absolute
value must be at least as large as rt in order to be a multiple of rt.

Exactly the same consideration holds for ρu. Both |σu| and |ρu| are smaller than
2|u−i|. Therefore, we must have |u − i| > blog(rt)c in order to have a chance that
the sums |σu| and |ρu| are larger than or equal to rt. Otherwise, we cannot have
rt | κi and rt | κu.

Algorithm 3 recovers bits in blocks of at most m bits. If it has found a valid test
pattern, it starts at the position immediately following that test pattern and tries
to recover the next block of length m starting at this position. If m < blog(rt)c,
the arguments above shows that in this block there cannot be a faulty output Q̃
in the list of collected faulty outputs that satisfies the verification step. Therefore,
Algorithm 3 needs a minimal blocksize of m = blog(rt)c in order to be able to
reconstruct another faulty output Q̃.

As the fault positions of two undetected faulty outputs Q̃1 and Q̃2 are at least
blog(rt)c bits away from each other, we have a maximum of (n−1)/ blog(rt)c many
different faulty outputs in the set collected by Algorithm 3. i �

Lemma 10 shows that the proposed algorithm secures the scalar multiplication
algorithm against the new Sign Change Faults if the group order of #Et is large
enough. A group order of #Et > 280 guarantees that the required block size of
m > 80 exceeds the acceptable amount of offline work significantly. For many
practical applications, #Et > 260 should already be enough.

The computational overhead is acceptable. Line 3 requires computations with
30 – 40 % larger moduli (for l(p) = 192 and l(t) = 60 – 80), Line 4 requires a scalar
multiplication on a considerably smaller curve with the scalar factor k mod #Et,
which is considerably smaller than k.

As the computations in Line 3 prohibit the use of inversions, projective coordi-
nates must be used. We have stated our results for the basic version of projective



coordinates but other weighted projective representations such as Jacobian or Hes-
sian representations will do just as well.

It has been noted in the literature that it is desirable to eliminate single points
of failure ([YKLM03], [BOS03]). The explicit check proposed in Line 5 uses the zero
flag as a single point of failure. However, one could easily modify the algorithm to
use ”infective computations” as defined in [YKLM03]. Lines 4, 5 and 6 would be
replaced by
4 Set R := (1/k mod rt) · Q − P on Et (using Algorithm 1)
5 Set c := R[x] + R[y]
6 Set S := cQ on Ep (using Algorithm 1)
7 Output S

5 Realization of Sign Change Attacks

At first sight, a Sign Change Attack does not seem to be easily performed in a
general setting. A random change of the y-coordinate cannot hope to yield −y
with non-negligible probability. However, there exist several special yet common
settings, where Sign Change Faults can be realized. We will give examples for
attacks on NAF-based variants of the scalar multiplication algorithm as well as
examples for attacks on certain properties of the crypto co-processor. The latter
attacks can be applied to any variant of repeated doubling.

We first show that any NAF based variant of the repeated doubling algorithm
is susceptible to Sign Change Faults. As noted before, these variants are often used
in modern smartcards.

The most direct attack on the NAF is to induce a SCF in one of the signed
digits of the recoded scalar k. I.e., change of −1 to +1 and vice versa, whereas a 0
is not changed at all. Although there exist compact representations of signed-digit
representations, cf. [JT01a], the most popular encoding described in [JY00] admits
a straightforward bit-flip attack. Note that an attacker being able to carry out the
attacks described in [SA02] or [QS02] has no difficulties to induce the formerly
sketched SCF on the recoded k.

Another conceivable way to attack the NAF is offered by the fact that any NAF-
based algorithm has to incorporate a conditional branch, where for secret key bit
ki = 1 an addition is performed and for secret key bit ki = −1, a subtraction is
performed. Currently, a whole zoo of physical attacks is available that targets such
conditional decisions, e.g., power spikes or clock glitches ([BCN+04], [ABF+02],
[AK96], [AK97], [KK99]). These attacks aim at forcing the conditional statement to
choose the wrong branch. In our case, choosing the wrong branch means to add −P
instead of P or vice versa. This results in a transient Sign Change Fault induced into
P as described in Section 3.2. This attack is also valid for more sophisticated NAF-
based repeated doubling variants, which aim to secure the basic scheme against
power and timing attacks, e.g., by using dummy operations.

Besides attacking the scalar multiplication algorithm on a high level, Sign
Change Faults can also be realized by attacking the addition and multiplication
procedures, which are used to compute point coordinates. One practical scenario for
this attack relies on the internal functionality of many real-world embedded crypto
co-processors supporting modular arithmetic, cf. [HP98] and [BOPV03]. Namely,



in order to speed up the time-critical modular multiplication operation, they most
often also rely on the non-adjacent form, cf. [Boo51], [Mac61], and [Kor93]. For
practicability issues most often only the classical 2-NAF recoding is used. In this
setting, also NAFs are used. However, this time, it is not the secret scalar k, which
is transformed into NAF, but factors used during the computation of P1 + P2 for
two elliptic curve point P1 and P2 (see below). Therefore, this attack also applies
to variants of the repeated doubling algorithm, which are not based on the NAF
of the secret scalar multiplier k.

The crucial point that we are exploiting here is that any efficient implementa-
tion of the NAF must provide special hardware to handle negative numbers, i.e.,
being able to compute the 2th complement of any register used as a multiplicand
without time delay. Actually, considering the prototypical architecture of such an
embedded crypto-co-processor, cf. [BOPV03] and [Sed87], this task is trivial to
solve. Namely, simply invert every bit send to the long integer arithmetic unit
(ALU) and additionally add +1. Note that providing this functionality is a must
for the modulus register in order to implement the underlying modular multipli-
cation algorithm efficiently, cf. [BOPV03], [Sed87], [WQ90], [Bar96] or [Mon85].
Given this functionality, it can be used for an attack.

We consider such a crypto co-processor, cf. [Sed87], adding simultaneously at
least three different operands with a possible sign change in one single instruction.
Changing the value of an operand to its negative, i.e., to its 2th complement,
one usually needs to change only one single bit among the control signals of the
corresponding ALU. This is due to the fact that the ALU of most crypto co-
processors is, as already explained above, designed to handle automatically the 2th
complement of any operand. Here, a fault attack can be mounted that results in
an SCF.

For concreteness, let us consider the projective addition formulas, cf. [BSS99],
[IEE98], for points P0 = (X0 : Y0 : Z0), P1 = (X1 : Y1 : Z1):

U0 := X0Z
2
1 , S0 := Y0Z

3
1 , U1 := X1Z

2
0 , S1 := Y1Z

3
0 ,

W := U0 − U1, R := S0 − S1, T := U0 + U1, M := S0 + S1,

Z2 := WZ0Z1, X2 := R2 − TW 2, V := TW 2 − 2X2, 2Y2 := V R − MW 3,

and for doubling the point P1 = (X1 : Y1 : Z1):

M := 3X2
1 + AZ4

1 , Z2 := 2Y1Z1, S := 4X1Y
2
1 ,

X2 := M2 − 2S, T := 8Y 4
1 , Y2 := M(S − X2) − T.

Here it becomes clear, that lots of load/store or exchange instructions are needed
to realize this formulas involving the original points P0 and P1. For example, an
implementation could use Y0 or Y1 via previous load/store or exchange instructions
as a multiplicand in the modular multiplications to compute S0, S1, Z2, or T . The
attack on Q′

i described in Section 3 can be realized by attacking Y0 during the
computation of S0. During this preparing load/store or exchange instruction, the
corresponding value must go through the ALU. While executing this operation, the
handled value is susceptible to an SCF as only a single bit among the control signals
must be changed to load/store or exchange the value in its target multiplicand



register to −Y0 or −Y1. This yields an SCF by changing one single control signal.
Note that [BCN+04] actually describes how to implement such attacks in practice.

All attack settings introduced above can be further relaxed, taking into account
that the device will check whether the final output is a valid point on the curve
or not to defend against attacks described in [BMM00] and [CJ03]. In this case,
attacks which change single bits with an acceptably high probability, e.g., byte
faults, can be used, because unsuccessful attacks are winnowed by this final check.

6 Conclusions and Open Problems

The Sign Change Attack has been shown to be a practical attack with a high suc-
cess probability, especially for NAF-based repeated doubling algorithms. Current
and future cryptosystems based on elliptic curves must be guarded against this
type of attacks carefully. As a first step in this direction, a new secure algorithm
is presented that withstands Sign Change Attacks with acceptable computational
overhead. Attack and countermeasure have been presented in the context of pro-
jective coordinates and elliptic curves defined over prime fields. However, both
attack and countermeasure also apply to other commonly used representations and
defining fields.

Interestingly, the Sign Change Attack presented in this paper does not apply
to elliptic curves of characteristic 2. It is an open problem to extend our attack to
elliptic curves of characteristic 2.

The results from Section 5 show that the most efficient solutions often pay their
performance advantage with security, just like in the case of CRT-RSA [BDL01].
Since Montgomery’s version is secure, our attack strengthens the claim from [JY03],
that the ”Montgomery ladder may be a first-class substitute of the celebrated
square-and-multiply algorithm”. It is an open problem whether it is possible to
successfully attack the Montgomery method where the y-coordinate is not used in
a way such that faulty results are created which are valid points on the curve.
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A On Choosing E � with Prime Order

For the security of our countermeasure against Sign Change Attacks, we assume
that both Ep and Et have prime order. We assume that Ep and P are chosen
first, which allows to use recommended curves (e.g., by [SEC00]). Afterwards, we
choose Et by choosing a triplet (At, xt, yt) ∈ Z

3
t uniformly at random until the

curve Et defined by that triplet has prime order. The order of such a curve Et can
be determined in polynomial time using Schoof’s Algorithm [Sch95]. This curve
Et with Bt := y2

t − x3
t − Atxt mod t and the point Pt = (xt : yt : 1) is used to

compute the combined curve Ept and to check the result in Line 5 of Algorithm 8.
The security analysis has shown that the security depends on the order of Pt on
Et. This does not require Et to be secret. Moreover, it also does not require #Et

to be prime. It is sufficient to choose a curve Et and a point Pt such that the order
of Pt on Et is large. A minimal size for the order of Pt on Et has been specified in
Section 4.1.



Based on the following widely accepted conjecture, choosing #Et as a prime is
practical. Our conjecture is implied by the well-known Cramer’s conjecture, stating
that π(x + log2(x)) − π(x) > 0 for x sufficiently large [GK86]. Here, π(x) is the
prime counting function. Our conjecture has been introduced in a similar setting
by Goldwasser and Kilian [GK86].

Conjecture 11 (Number of Primes in the Hasse Interval) There exist con-

stants c1, c2 > 0 such that

π(t + 2
√

t) − π(t − 2
√

t) ≥ c2

√
t

logc1(t)
.

The following theorem states that we can find a small curve Et with prime order
efficiently if Conjecture 11 holds.

Theorem 12 (Choosing Et with Prime Order) Let (At, xt, yt) ∈ Z
3
t be cho-

sen uniformly at random. (At, xt, yt) defines the curve Et as Et : y2
t zt ≡ x2

t +
Atxtz

2
t + Btz

3
t mod t where Bt := y2

t − x3
t − Atxt mod t. If Conjecture 11 is true,

then there exists a constant c > 0 such that the probability that Et defined by

(At, xt, yt) ∈ Z
3
t has prime order is at least

c · c2

log1+c1(t)
,

where c1, c2 are as in Conjecture 11.

Proof. Given a triplet (At, xt, yt) ∈ F
3
t , we want to determine the probability that

the curve Et defined by this triplet has prime order. As the parameter At is given
and xt and yt define a point P = (xt : yt : 1) on the curve, Et is uniquely
defined. As zt = 1, the missing curve parameter Bt can easily be computed as
Bt = y2

t − x3
t − Atxt mod t.

Et is a valid elliptic curve only if the discriminant is non-zero, i.e., if gcd(4A3
t +

27B2
t , t) = 1. The chance that a triplet yields this case is negligible: There are t2− t

different curves over Ft, each of which contains at least t − 2
√

t many points. As
the curve is uniquely defined if At and any of its points Pt are fixed, there are at
least (t2− t) · (t−2

√
t) many valid triplets. As there are t3 triplets in F

3
t altogether,

we have

Pr[(At, xt, yt) yields a valid curve Et] ≥
(t2 − t) · (t − 2

√
t)

t3

= 1 −
(

2√
t

+
1

t
− 1

t
√

t

)

≥ 1 − 3√
t
.

As this probability is negligibly far from 1, we will assume that all t3 triplets define
valid curves for simplicity. By Hasse’s Theorem, we know that all possible group
orders lie in the interval [t+1−2

√
t, t+1+2

√
t], cf. [Sil00]. The theorem of Deuring

(cf. [Len87] or [Deu41]) states that there exists a constant c′ > 0 such that there
are at least c · (t

√
t)/ log(t) many elliptic curves for every given group order. This

shows that the group orders are almost evenly distributed over all possible curves
up to a factor of 1/ log(t). Among the 4

√
t + 1 possible group orders, there are



∆π := π(t + 1 + 2
√

t) − π(t + 1 − 2
√

t) prime group orders, where π(x) is the
prime counting function. Following Conjecture 11, we have c1, c2 > 0 such that

∆π ≥ c2

√
t

logc1 (t) . Each of these curves is uniquely defined by its A parameter and any

of its points, i.e., there are at least t − 2
√

t many triplets that define any of these
curves. This holds because each of these curves has at least t+1−2

√
t many points

and O cannot be chosen in (At, xt, yt). Therefore, the probability that a random
triplet (At, xt, yt) ∈ F

3
t yields an elliptic curve with prime order is

Pr[#Et is prime] ≥ ∆π · c′ · t
√

t · (t − 2
√

t)

log(t) · t3 ≥ c′

log(t)
·
√

t − 2

t
· c2

√
t

logc1(t)

=
c′ · c2

log1+c1(t)
·
(

1 − 2√
t

)

=
c · c2

log1+c1(t)
,

where for t > 16 we can choose c = c′/2.i �


