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Abstract. We present a new type of fault attacks on elliptic curve scalar
multiplications: Sign Change Attacks. These attacks exploit different
number representations as they are often employed in modern crypto-
graphic applications. Previously, fault attacks on elliptic curves aimed to
force a device to output points which are on a cryptographically weak
curve. Such attacks can easily be defended against. Our attack produces
points which do not leave the curve and are not easily detected. The pa-
per also presents a revised scalar multiplication algorithm that protects
against Sign Change Attacks.
Keywords: elliptic curve cryptosystem, fault attacks, smartcards.

1 Introduction

Secure cryptographic applications require a secure platform, which is not offered
by today’s desktop computers. Consequently, sensitive applications, especially for
digital signatures, are deployed on smartcards. Smartcards are tamper-resistant
and not threatened by viruses and other malicious code. However, smartcards
must adhere to the laws of physics, a fact that can be exploited by an adversary
to collect additional information about their computations using side-channel in-
formation. The most prominent side-channels are given by timing measurements,
power consumption measurements, and faulty outputs.

In 1997, Boneh, DeMillo and Lipton ([BDL01]) introduced fault attacks,
which exploit faulty outputs. They showed how to use errors in the compu-
tation of an RSA signature to recover the secret key. Today, several different
methods to purposely induce faults into devices and memory structures have
been reported (e.g., [AK96], [SA02]). As it is a quite natural idea to extend the
results to other group based cryptosystems, [BMM00] show how to exploit errors
in elliptic curve scalar multiplications. This result has been refined in [CJ03].

All fault attacks on elliptic curve cryptosystems presented so far ([BMM00],
[CJ03]) tried to induce faults into the computation of a scalar multiplication
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kP on the elliptic curve E such that the computation no longer takes place on
the original curve E. By changing the base point P or an intermediate point
randomly, by changing the curve parameters of E, or by changing the defining
field, the operations leave the group defined by the elliptic curve E. Instead the
scalar multiplication is done on a different curve Ẽ and/or with a different base
point P̃ . Then the so-called pseudo-addition can be used to recover the secret
key if the point k · P̃ on the new curve Ẽ allows to solve the discrete logarithm
problem at least partially. The disadvantage (or advantage) of the proposed
attacks is that there is an obvious and efficient countermeasure: simply check
whether the result is a point on the original curve E or not.

In this paper, we present a new type of fault attacks on elliptic curve scalar
multiplication, Sign Change Attacks. Our attack does not change the original
curve E and works with points on the curve E. We show how sign changes of
intermediate points can be used to recover the secret scalar factor. Our attack
leads to a faulty output that is a valid point on the original elliptic curve. Then
we can use an algorithm similar to the one presented for RSA in [BDL01] to
recover the secret scalar factor in expected polynomial time. We present our at-
tack for the NAF-based left-to-right repeated doubling algorithm, because here
Sign Change Faults seem to be easier to realize than for other repeated dou-
bling variants (see Section 5). However, we stress the fact that the attack can
also be used against other scalar multiplication algorithms, e.g., the right-to-left
version, binary expansion based repeated doubling, and the Montgomery ladder
([Mon87]) if the y-coordinate is used.

Our attacks show that the basic ideas of [BDL01] carry over to elliptic curve
cryptosystems as well. Clearly, the standard countermeasures described above,
namely checking whether the result lies on the original curve, fail to detect Sign
Change Attacks. In fact, they even support Sign Change Attacks by holding
back a great variety of faulty results if they have been caused by errors other
than Sign Change Faults. This allows an adversary to use a less precise attack
setting.

We also present a revised version of the basic scalar multiplication algorithm
for elliptic curves that is secure against Sign Change Attacks in Section 4. Our
countermeasure is motivated by a similar countermeasure by Shamir against at-
tacks on CRT-RSA exponentiations ([Sha99]). We use the original elliptic curve
together with a second small curve, which allows to define a larger ”combined
curve”, where the desired scalar multiplication is performed. Using this combined
curve, one can check the final result efficiently. We show that this technique se-
cures all standard repeated doubling algorithms against Sign Change Attacks
and previously reported attacks. Our analysis proves ad hoc security against
these attacks only, it does not provide a general security proof or security reduc-
tion. Research on fault attacks has not yet established a mathematical framework
to allow general security claims.

One can also use randomization schemes to counteract a differential fault at-
tack with Sign Change Faults. However, smartcard certification authorities often
require that algorithms are secure against fault attacks even without random-



ization. Moreover, randomization schemes that only randomize the base point
are not guaranteed to counteract an SCA, e.g., Coron’s third countermeasure
in [Cor99, §5.3] or the proposed elliptic curve isomorphism in [JT01, §4.1]. Al-
ternatively, some scalar multiplication algorithms like the Montgomery ladder
([Mon87]) can be used without the y-coordinate. Therefore, these methods can-
not be attacked by a Sign Change Attack. However, patent issues prevent the
usage of the Montgomery ladder and endorse the widespread use of variants of
the standard repeated doubling algorithm, mostly based on the NAF.

The paper is organized as follows: After briefly recalling the basics of elliptic
curve arithmetic, we present the Sign Change Attack on Elliptic Curve Scalar
Multiplication in Section 3. Section 4 is devoted to presentation and analysis
of the proposed countermeasure. In Section 5, we discuss methods to carry out
Sign Change Faults in practice. Section 6 concludes the paper. Since the main
contribution of this paper is the presentation of the new Sign Change Faults
and the countermeasure presented in Section 4, we concentrate in this extended
abstract on Sections 4 and 5.

2 Elliptic Curve Cryptography

An elliptic curve over a field Fp with p > 3 is defined as the set of points
(x : y : z) ∈ F

3
p that satisfy the projective Weierstraß equation

y2z ≡ x3 + Axz2 + Bz3 mod p. (1)

Moreover, O denotes the point at infinity (0 : 1 : 0). The points of E form an
additive group. The elliptic curve E as well as points on E can be expressed in a
variety of coordinate representations, e.g., affine coordinates, projective coordi-
nates, Jacobian coordinates, or Hessian coordinates. This paper concentrates on
projective representations as defined above. As we do not need to consider the
projective addition formula in detail, we refer the reader to standard literature
for a description of the actual computation of the sum of two projective points.
A nice overview of several addition formulas can be found in [CMO98].

In cryptosystems based on elliptic curves, e.g., the ElGamal cryptosystem and
its variants, a crucial computation is the scalar multiplication of a public base
point P with a secret scalar factor k. Attacks aim to recover the value k. Several
implementations of fast scalar multiplication algorithms have been presented
in the literature. In Algorithm 1, we present a left-to-right version of the well
known repeated doubling algorithm to present our attack. Algorithm 1 already
implements a standard countermeasure against random fault attacks in Line 5. It
protects against previously proposed fault attacks on elliptic curve cryptosystems
([BMM00], [CJ03]). For all subsequent considerations, we will always assume that
this standard countermeasure is applied.



Algorithm 1 (NAF-based Repeated Doubling on Elliptic Curve E)
Input: A point P on E, and a secret key 1 < k < ord(P ) in non-adjacent form,

where n denotes the binary length of k, i.e. the number of bits of k
Output: kP on E
1 Set Qn := O
2 For i from n − 1 downto 0 do
3 Set Q′

i := 2Qi+1

4 If ki = 1 then set Qi := Q′

i + P
If ki = 1 else if ki = −1 then set Qi := Q′

i − P
If ki = 1 else if ki = −1 else set Qi := Q′

i

5 If Q0 is not on E then set Q0 := O
6 Output Q0

In Algorithm 1, we use the non-adjacent form (NAF) representation of the
secret scalar k. The performance of most variants of the the classical repeated
doubling algorithm will improve if the scalar k is recoded into non-adjacent form
(NAF). The 2-NAF uses digits from {−1, 0, 1} and ensures that no two adjacent
digits are non-zero. It achieves a higher ratio of zeros to non-zeros. For details on
the NAF, see [Boo51], or [JY00]. Using the NAF, subtractions are introduced.
Since negating a point on an elliptic curve simply means to change the sign of the
y-coordinate, subtractions are cheap operations on elliptic curves. The savings
using repeated doubling based on the NAF are 11.11% on average (see [MO90]).

3 The Sign Change Attack on Elliptic Curve Repeated

Doubling

Previous fault attacks on elliptic curve scalar multiplication used the fact that
a pertubated point is not a valid point on the given curve with high probability.
However, such a situation can be easily detected and defended against. In the
following, we present a new type of faults, Sign Change Faults. They allow to
recover the secret scalar factor of a scalar multiplication operation. Section 5 will
investigate how such faults can be induced. It will be shown that these attacks
are practical.
Our Fault Model. We assume that an adversary is able to induce a Sign

Change Fault (SCF) on a specific elliptic curve point used in Algorithm 1. A Sign
Change Fault changes the sign of the y-coordinate of an attacked point, e.g., Q′

i

on E, such that Q′

i 7→ −Q′

i. The adversary does not know in which iteration of
the loop the error occurs. However, we assume that the loop iteration determined
by i is chosen i.i.d. according to the uniform distribution. Throughout this paper,
we denote the correct final result by Q and a faulty final result by Q̃.

Elliptic curves defined over prime fields, which are recommended by current
standards such as ANSI, SEC, and IEEE, have prime order or use a subgroup
of prime order. Therefore, we will assume this property for our curves as well.
It implies that any point P 6= O on E must have the same (large) prime order.
We will use this assumption frequently.



We state our attack using an algorithm similar to the attack presented by
Boneh, DeMillo and Lipton in [BDL01] on RSA. Similar to [BDL01], we need a
polynomial number of faulty outputs for the same inputs to achieve a sufficiently
high success probability. We use the following result from [BDL01] to bound the
number of necessary faulty outputs needed by our attack.

Fact 2 (Number of Necessary Attacks) Let x = (x1, x2, . . . , xn) ∈ {0, 1}n

and let M be the set of all contiguous intervals of length m < n in x. If c =
(n/m) · log(2n) bits of x are chosen uniformly independently at random, then

the probability that each interval in M contains at least one chosen bit is at least

1/2.

3.1 Sign Change Attack on Q′

i
in Line 4.

All of the variables in Lines 3 and 4 can be successfully attacked with a Sign
Change Attack (SCA). In the following, we present the attack on the variable
Q′

i in Line 4 during some loop iteration 0 ≤ i ≤ n − 1.
The basic idea of our attack algorithm is to recover the bits of k in pieces

of 1 ≤ r ≤ m bits. Here, m is chosen to reflect a trade-off between the number
of necessary faulty results derived from Fact 2 and the approximate amount 2m

of offline work. Throughout this paper, we assume that 2m � #E. To motivate
the algorithm, assume that a faulty value Q̃ is given that resulted from an SCF
in Q′

i. We have

Q̃ = −2iQ′

i +

i
∑

j=0

kj · 2
j · P = −Q + 2Li(k) with Li(k) :=

i
∑

j=0

kj2
jP (2)

On the right hand side of Equation (2), the only unknown part is Li(k), which de-
fines a multiple of P . If only a small number of the signed bits k0, k1, . . . , ki used
in that sum is unknown, these bits can be guessed and verified using Equation
(2). This allows to recover the signed bits of k starting from the LSBs. Moreover,

due to the fact that Q = Li(k) + Hi+1(k), where Hi+1(k) :=
∑n−1

j=i+1
kj2

jP , it
is also possible to recover the signed bits of k starting from the MSBs. As we
assume that errors are induced uniformly at random, an adversary may choose
freely between these two recovery strategies. In the following, we will use the
LSB version based on Equation (2). We assume that both Q and Q̃ are known.
The complete attack is stated as the following algorithm.

Algorithm 3 (The Sign Change Attack on Q′

i
)

Input: Access to Algorithm 1, n the length of the secret key k > 0 in non-

adjacent form, Q = kP the correct result, m a parameter for acceptable

amount of offline work.

Output: k with probability at least 1/2.

# Phase 1: Collect Faulty Outputs

1 Set c := (n/m) · log(2n)



2 Create c faulty outputs of Alg. 1 by inducing a SCF in Q′

i for random values of
i.

3 Collect the set S = {Q̃ | Q̃ 6= Q is a faulty output of Algorithm 1 on input P}.
# Phase 2: Inductive Retrieval of Secret Key Bits

4 Set s := −1 indicating the number s + 1 of known bits of k.
5 While (s < n − 1) do

# Compute the known LSB part.

6 Set L := 2
∑s

j=0 kj2
jP

# Try all possible bit patterns with length r ≤ m.

7 For all lengths r = 1, 2, . . .m do
8 For all valid NAF-patterns x = (xs+1, xs+2, . . . , xs+r) with xs+r 6= 0 do

# Compute and verify the test candidate Tx

9 Set Tx := L + 2
∑s+r

j=s+1 xj2
jP

10 for all Q̃ ∈ S do

11 if
(

Tx − Q̃
)

= Q then

12 conclude that ks+1 = xs+1, ks+2 = xs+2, . . . , ks+r = xs+r,
13 set s := s + r, and continue at Line 5
# Handle a Zero Block Failure

14 If no test candidate satisfies the verification step, then
15 assume that ks+1 = 0 and set s := s + 1.
16 Verify Q = kP. If this fails then output ”failure”.
17 Output k

Comment. Algorithm 3 has been abbreviated for clarity in two minor details.
On the one hand, the highest iteration that suffered a SCF in Line 2 of Algorithm
3 does not need to be the last iteration n − 1. However, since we assume the
”lucky case”of Fact 2, this special case can be handled efficiently by an exhaustive
search for at most m bits.

Furthermore, it is clear that given n as the length of the NAF of k, Algorithm
3 does not need to test patterns whenever s + r ≥ n. Note that s indicates that
the s + 1 least significant bits k0, k1, . . . , ks are known. In fact, we may assume
that the most significant bit of k is kn−1 = 1, otherwise n cannot be uniquely
defined. Therefore, we may assume w.l.o.g. that s + r < n − 1. Note that we
assume k > 0. We also assume that (k0, k1, . . . , ks, xs+1, . . . , xs+r) is always in
valid NAF.

We will prove the success of Algorithm 3 in two lemmas. First, we will show
that only a correct guess for the pattern of k can satisfy the verification step in
Line 11. Then, we will show that Algorithm 3 will always correctly recover at
least the next unknown bit of k. The analysis of these two cases is very similar
to the analysis of a similar attack on RSA, presented in [BDL01]. Therefore, we
omit the proofs of the two lemmas and the summarizing theorem. They will be
presented in detail in the full version. Before stating the results, we introduce
Zero Block Failures.

Definition 4 (Zero Block Failure) Assume that Algorithm 3 already recov-

ered the s+1 least significant signed bits k0, k1, . . . , ks of k. If the signed bits ks+1,



ks+2, . . . , ks+r are all zero and all Sign Change Faults that happened in itera-

tions s+1, . . . , s+m really occurred in the first r iterations s+1, s+2, . . . , s+r,
the situation is called a Zero Block Failure.

A Zero Block Failure is named after the fact that errors in a block of zeros
will not be detected as errors within that block. Equation (2) shows that for
any s, Ls(k) = Ls+1(k) = . . . = Ls+r(k) for all sequences ks+1 = 0, ks+2 =
0, . . . , ks+r = 0. In this case, the values Q̃1 = −Q + 2Ls(k) and Q̃2 = −Q +
2Ls+r(k) are equal. Therefore, given Q̃ = −Q + 2Ls(k), Algorithm 3 cannot
determine how many zero bits — if any — follow ks. Hence, tailing zeros must
be neglected, because their number cannot be determined correctly. This is the
reason why Algorithm 3 only tests patterns x which end in ±1 in Line 8.

In Algorithm 3, we may have one of two cases in each iteration of the loop
of Lines 5–15. First, we may encounter a test pattern, which satisfies the verifi-
cation step in Line 11. Second, no test pattern may satisfy the verification step.
The following two lemmas show that Algorithm 3 recovers at least one bit of k
correctly in either case.

Lemma 5 (No False Positives) We assume that the bits k0, k1, . . . , ks of k
have already been computed by Algorithm 3. If Algorithm 3 computes a test bit

pattern x = (xs+1, xs+2, . . . , xs+r), r ≤ m, such that Tx satisfies the verification

step in Line 11 for some Q̃ ∈ S, then x is the correct bit pattern, i.e., xj = kj

for all s + 1 ≤ j ≤ s + r.

Lemma 6 (Correct Recovery) We assume that the bits k0, k1, . . . , ks of k
have already been computed by Algorithm 3. Furthermore, we assume that a Sign

Change Fault was induced into the intermediate value Q′

i in Line 4 of Algorithm

1 for some i ∈ {s + 1, s + 2, . . . , s + m}.
Then, in order to recover the next signed bit ks+1, Algorithm 3 will be in one

of two cases: In the first case, it finds a test bit pattern x = (xs+1, xs+2, . . . , xs+r),
r ≤ m, that satisfies the verification step in Line 11 and concludes that kj = xj

for all s + 1 ≤ j ≤ s + r in Line 12. In the second case, it detects a Zero Block

Failure and concludes that ks+1 = 0 in Line 15. In both cases, the conclusion is

correct and between 1 and r bits of k are recovered correctly.

The results of the previous lemmas are summarized in the following theorem.
It is a straightforward result from the two previous lemmas, combined with a
simple count of operations performed by Algorithm 3.

Theorem 7 (Success of the Proposed Sign Change Attack) Algorithm

3 succeeds to

recover the secret scalar multiple k of bit length n in time O(n · 3m · c · M) with

probability at least 1/2. Here, c = (n/m) · log(2n) and M is the maximal cost of

a full scalar multiplication or a scalar multiplication including the induction of

a Sign Change Fault.



The results of Theorem 7 carry over similarly to Sign Change Attacks on all
other variables used inside the loop in Algorithm 1. The ideas presented in the
attack also apply to the NAF-based right-to-left repeated squaring version and
to the binary expansion based versions. Sign Change Attacks can also be used
against the Montgomery ladder [Mon87] if the y-coordinate is used.

4 Countermeasures

As explained in the introduction, previously proposed countermeasures cannot
be used to defend against Sign Change Faults. Therefore, we propose a modi-
fied scalar multiplication algorithm presented as Algorithm 8 as an alternative
countermeasure against Sign Change Attacks (SCA). It adds little overhead at
the benefit of checking the correctness of the final result. Moreover, it can be
based on any scalar multiplication algorithm which does not need field divisions.
We will present our countermeasure in the remainder of this section and analyze
it using the NAF-based version presented as Algorithm 1. The countermeasure
has been motivated by Shamir’s countermeasure against attacks on CRT-RSA
exponentiations [Sha99].

We first explain the basic idea of the countermeasure. For the modified al-
gorithm, we assume that the curve E = Ep is defined over a prime field Fp, i.e.,
we have Ep := E(Fp). Furthermore, we choose a small prime t of about 60 – 80
bits to form the ”small” curve Et := E(Ft). Et does not depend on Ep. Given
both curves, we define a ”combined” elliptic curve Ept over the ring Zpt. This
curve Ept is defined with parameters Apt and Bpt such that Apt ≡ Ap mod p,
Apt ≡ At mod t and Bpt ≡ Bp mod p, Bpt ≡ Bt mod t. Here, Ap and At denote
the A-parameters and Bp and Bt denote the B-parameters in Equation (1) of
Ep and Et respectively. Both Apt and Bpt can be easily computed using the
Chinese Remainder Theorem (CRT). We also choose a base point Pt on Et and
use the combined point Ppt as the base point for the scalar multiplication in Ept.
Here, Ppt is computed using the CRT in the same manner as Apt and Bpt above.
Computing Q = kPpt on Ept allows to verify the result on the small curve Et.

Algorithm 8 (Sign Change Attack Secure Scalar Multiplication)
Input: A point P on Ep, and a secret key 1 < k < ord(P ), where n denotes

the binary length of k, i.e., the number of bits of k
Output: kP on Ep

# offline initialization (i.e., at production time)
1 Choose a prime t and an elliptic curve Et

2 Determine the combined curve Ept

# main part
3 Set Q := kPpt on Ept (e.g., using Algorithm 1)
4 Set R := kPt on Et (e.g., using Algorithm 1)
5 If R 6= Q mod t then output ”failure”.
6 Else output Q on Ep



Scalar Multiplication is used twice, once in Line 3 and once in Line 4. For
the algorithm used, we assume that it features a check of the final result that
returns O if the result is not a valid point on the curve (e.g., Line 5 of Algorithm
1). In the case where Ept is used, we assume for simplicity that this check is
performed both modulo p and modulo t, i.e., both on Ep and on Et.

On the Choice of Ep and Et. For the security of our countermeasure against
Sign Change Attacks, we assume that both Ep and Et have prime order. Both
curves are chosen independently, which allows to use recommended curves (e.g.,
by [SEC00]) for Ep. The security analysis will show that the security depends
on the order of Pt on Et. This does not require Et to be secret. Moreover, it
also does not require #Et to be prime. It is sufficient to choose a curve Et and
a point Pt such that the order of Pt on Et is large. We will specify a minimal
size for the order of Pt on Et later. Finding such a curve Et is feasible as shown
in [BSS99, §VI.5].

4.1 Analysis of the Countermeasure.

It is easily shown that Algorithm 8 computes the correct result if no error occurs.
This is evident from modular arithmetic.

It remains to show that the proposed algorithm is secure against Fault At-
tacks. We only consider ad-hoc security for our proofs, i.e., we only prove security
against known Fault Attacks. Research on fault attacks has not yet established
a mathematical framework to allow general security claims. For our analysis,
we assume that Algorithm 1 has been chosen as the scalar multiplication al-
gorithm, although the result holds for other scalar multiplication algorithms as
well. To defend against previously proposed fault attacks, the standard coun-
termeasure introduced in Section 2 has been included as an integral part of
Algorithm 1.Therefore, we concentrate on security against Sign Change Attacks
on Line 3 of Algorithm 8 only.

We use the same fault model as in Section 3, i.e., a Sign Change Fault can be
induced in any intermediate variable used by the scalar multiplication Q = kP
on Ept. Sign Change Faults can only be induced in points of elliptic curves, the
scalar k cannot be attacked. Furthermore, we assume that only a single SCF
can be induced during each computation of kP . We do not consider multiple
correlated attacks, since such attacks are not a realistic scenario. The adversary
can target a specific variable, e.g., Q′

i, but he cannot target a specific iteration
i. As we are interested to show that a faulty value is returned with negligible
probability, we only need to investigate Sign Change Attacks on the computation
in Line 3 of Algorithm 8. Attacks in Line 4 cannot yield a faulty output as Q is
not changed by Line 4. We first investigate the basic requirement for an error to
be undetected by the countermeasure in Line 5.

Lemma 9 (Undetectable Sign Change Faults) Let Q = kPpt be the cor-

rect result of the scalar multiplication in Line 3 of Algorithm 8 and let Q̃ =
Q + κi · P 6= Q be a faulty result from an attack on Line 3. Let rt := #Et be



the group order of Et, assumed to be prime. The faulty result Q̃ passes by the

detection mechanism in Line 5, iff rt | κi.

Proof. Let R and Q denote the variables used in Algorithm 8. If rt | κi, we have
κiP = O on Et. Therefore, the test ”R 6= Q” in Line 5 of Algorithm 8 yields
kPt = Q + O on Et. As the correct result Q satisfies Q = kPt on Et, this
would not trigger a ”failure” output and the faulty value Q̃ would be returned.
As Q̃ 6= Q on Ept is assumed, we also have Q̃ 6= Q on Ep. This case results in a
faulty output.

If rt 6 | κi, we must show that kPt 6= Q̃ on Et. We know that for the correct
value Q, it holds that R = Q on Et. If rt 6 | κi, we have κiP 6= O on Et because
rt is the prime group order. Therefore, the order of P is rt as well. Consequently,
we have R 6= Q = Q̃ on Et and the security alert in Line 5 is triggered.i �

Lemma 10 (Number of Undetectable Sign Change Faults) Let rt be the

group order of Et, assumed to be prime. Let m be the blocksize used in Algorithm

3. Then a Sign Change Attack on Algorithm 8 needs a blocksize m ≥ blog(rt)c
to be successful. Moreover, at most (n − 1)/ blog(rt)c many undetectable faulty

outputs exist.

Proof. Assume that a Sign Change Fault was induced into Q′

i for some i, result-
ing in a faulty output Q̃1. By Equation (2), we have

Q̃1 = −Q + 2Li(k) = Q + κiP where κi := −2i+2

n−1
∑

j=i+1

kj2
j−i−1.

We further assume that rt | κi, i.e., Q̃1 has not been detected as a faulty value
according to Lemma 9. We now consider another faulty output Q̃2 6= Q̃1 collected
by Algorithm 3. Let u 6= i denote the fault position, i.e., Q̃2 = Q + κuP .

We claim that for all u with |u − i| ≤ blog(rt)c, u − i 6= 0, it holds that
rt 6 | κu. We consider the two cases u < i and u > i. For u < i, we have

κu = −2u+2

n−1
∑

j=u+1

kj2
j−u−1 = κi − 2u+2 · σu, where σu :=

i
∑

j=u+1

kj2
j−u−1,

(3)

and for u > i, we have

κu = −2u+2

n−1
∑

j=u+1

kj2
j−u−1 = κi + 2i+2 · ρu, where ρu :=

u
∑

j=i+1

kj2
j−i−1. (4)

The value Q̃2 is only output if it is an undetectable fault that bypassed Line 5
of Algorithm 8. According to Lemma 9, this requires that rt | κu. As we assume
that rt | κi, we need to analyze the case that rt |σu and rt | ρu respectively.
We first investigate σu. Here, we have two cases: Either σu = 0 or σu > 0 over



the integers. If σu = 0 over the integers, we have κu = κi and Q̃1 = Q̃2. As
this contradicts our assumption that Q̃1 6= Q̃2, we may assume that σu is not
equal to 0 over the integers. If the sum in Equation (3) is not equal to 0 over
the integers, its absolute value must be at least as large as rt in order to be a
multiple of rt. The same considerations hold for u > i.

Algorithm 3 recovers bits in blocks of at most m bits. If it has found a valid
test pattern, it starts at the position immediately following that test pattern
and tries to recover the next block of length m starting at this position. If
m < blog(rt)c, the arguments above shows that in this block there cannot be a
faulty output Q̃ in the list of collected faulty outputs that satisfies the verification
step. Therefore, Algorithm 3 needs a minimal blocksize of m = blog(rt)c in order
to be able to reconstruct another faulty output Q̃.

As the fault positions of two undetected faulty outputs Q̃1 and Q̃2 are at least
blog(rt)c bits away from each other, we have a maximum of (n − 1)/ blog(rt)c
many different faulty outputs in the set collected by Algorithm 3. i �

Lemma 10 shows that the proposed algorithm secures the scalar multiplica-
tion algorithm against the new Sign Change Faults if the group order of #Et is
large enough. A group order of #Et > 280 guarantees that the required block
size of m > 80 exceeds the acceptable amount of offline work significantly. For
many practical applications, #Et > 260 should already be enough.

The computational overhead is acceptable. Line 3 requires computations with
30 – 40 % larger moduli (for l(p) = 192 and l(t) = 60 – 80), Line 4 requires
a scalar multiplication on a considerably smaller curve with the scalar factor
k mod #Et, which is considerably smaller than k.

As the computations in Line 3 prohibit the use of inversions, projective coor-
dinates must be used. We have stated our results for the basic version of projec-
tive coordinates but other weighted projective representations such as Jacobian
or Hessian representations will do just as well.

5 Realization of Sign Change Attacks

At first sight, a Sign Change Attack does not seem to be easily performed in a
general setting. A random change of the y-coordinate cannot hope to yield −y
with non-negligible probability. However, there exist several special yet common
settings, where Sign Change Faults can be realized. We will give examples for
attacks on NAF-based variants of the scalar multiplication algorithm as well as
examples for attacks on certain properties of the crypto co-processor. The latter
attacks can be applied to any variant of repeated doubling.

One special way to attack the NAF is offered by the fact that any NAF-
based algorithm has to incorporate a conditional branch, where for secret key
bit ki = 1 an addition is performed and for secret key bit ki = −1, a subtraction
is performed. Currently, a whole zoo of physical attacks is available that tar-
gets such conditional decisions, e.g., power spikes or clock glitches ([BCN+04],
[ABF+02]). These attacks aim at forcing the conditional statement to choose



the wrong branch. In our case, choosing the wrong branch means to add −P
instead of P or vice versa. Although this attack cannot be applied to mount a
Sign Change Attack on other intermediate variables, such as Q′

i as analyzed in
Section 3, it is an instructive example. Moreover, a Sign Change Attack on P can
also be used to recover the secret key, similar to the attack described in Section
3. This attack is also valid for more sophisticated NAF-based repeated doubling
variants, which aim to secure the basic scheme against power and timing attacks,
e.g., by using dummy operations.

To achieve sign changes of any intermediate variable, consider the following
scenario. Many real-world embedded crypto co-processors supporting modular
arithmetic most often also rely on the non-adjacent form to speed up the time-
critical modular multiplication operation, cf. [HP98], [Kor93]. Here, the factors
used during the computation of P1 + P2 for two elliptic curve points P1 and
P2 are attacked. Any efficient implementation of the NAF must provide special
hardware to handle negative numbers, i.e., being able to compute the two’s
complement of any register used as a multiplicand without time delay, cf. [Sed87],
[WQ90], or [Mon85]. This task is trivial to solve by simply inverting every bit
sent to the long integer arithmetic unit (ALU) and additionally adding +1. Given
this functionality, it can be used for an attack.

As a concrete example, we consider such a crypto co-processor, cf. [Sed87],
adding simultaneously at least three different operands with a possible sign
change in one single instruction. Changing the value of an operand to its nega-
tive, i.e., to its two’s complement, one usually needs to change only one single bit
among the control signals of the corresponding ALU. This is due to the fact that
the ALU of most crypto co-processors is, as already explained above, designed to
handle automatically the two’s complement of any operand. Here, a fault attack
can be mounted that results in an SCF.

For concreteness, let us consider the following projective addition formula,
cf. [IEE98], for points P0 = (X0 : Y0 : Z0), P1 = (X1 : Y1 : Z1):

U0 := X0Z
2
1 , S0 := Y0Z

3
1 , U1 := X1Z

2
0 , S1 := Y1Z

3
0 ,

W := U0 − U1, R := S0 − S1, T := U0 + U1, M := S0 + S1,

Z2 := WZ0Z1, X2 := R2 − TW 2, V := TW 2 − 2X2, 2Y2 := V R − MW 3.

Here it becomes clear, that lots of load/store or exchange instructions are needed
to realize this formulas involving the original points P0 and P1. For example, an
implementation could use Y0 or Y1 via previous load/store or exchange instruc-
tions as a multiplicand in the modular multiplications to compute S0, or S1.
The attack on Q′

i described in Section 3 can be realized by attacking Y0 during
the computation of S0. During this preparing load/store or exchange instruc-
tion, the corresponding value must go through the ALU. While executing this
operation, the handled value is susceptible to an SCF as only a single bit among
the control signals must be changed to load/store or exchange the value in its
target multiplicand register to −Y0 or −Y1. This yields an SCF by changing one
single control signal. Note that [BCN+04] actually describes how to implement



such attacks in practice. A similar consideration also applies to the projective
doubling formula.

6 Conclusions and Open Problems

Fault attacks are a significant threat to secure communication based on mo-
bile devices. We have introduced a new type of fault attacks on elliptic curve
cryptosystems, Sign Change Attack, which allow attacks with a high success
probability, especially for NAF-based repeated doubling algorithms. Current and
future cryptosystems based on elliptic curves must be guarded against this type
of attacks carefully. As a first step in this direction, a new secure algorithm is
presented that withstands Sign Change Attacks with acceptable computational
overhead. Attack and countermeasure have been presented in the context of pro-
jective coordinates and elliptic curves defined over prime fields. However, both
attack and countermeasure also apply to other commonly used representations
and defining fields.

Interestingly, the Sign Change Attack presented in this paper does not apply
to elliptic curves of characteristic 2. It is an open problem to extend our attack
to elliptic curves of characteristic 2.

The results from Section 5 show that the most efficient solutions often pay
their performance advantage with security, just like in the case of CRT-RSA
[BDL01]. Since Montgomery’s version is secure, our attack strengthens the claim
from [JY03], that the ”Montgomery ladder may be a first-class substitute of the
celebrated square-and-multiply algorithm”. It is an open problem whether it is
possible to successfully attack the Montgomery method where the y-coordinate
is not used in a way such that faulty results are created which are valid points
on the curve.
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