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Introduction

Addition chains are a very old concept. It has been used for the purpose of
exponentiating numbers as early as 2000 BC in ancient Egyptian mathemat-
ics (see [Knu97], p.362). These days, addition chains have grown indepen-
dent from their major application, exponentiation strategies, as questions
about the optimal (shortest) length, about the complexity of computing a
shortest addition chain and about efficient algorithms for a lot of applica-
tions are still awaiting answers from modern mathematics.

But even the concept of addition chains has not been fully exploited yet. In
general, only the operation of adding two values to their sum seems to be
feasible, because the corresponding operation in most applications is com-
puting the power of a given number. In these general settings, the inverse
operation of the addition, the subtraction, requires the explicit computation
of a multiplicative inverse, a task that can be a quite costly operation in
general. However, there are important exceptions, for example elliptic curve
arithmetic, where inversion is cheap or free. For these fields of application,
inversion can lead to a valuable improvement, to a faster exponentiation.
And faster exponentiation strategies are needed in a lot of applications,
namely in modern cryptography, where whole cryptosystems like the RSA
scheme (see [Sti95],84) or the ElGamal scheme (see [Sti95],85.1) are based
upon exponentiations. Here, the computation of powers accounts for a rel-
evant part of the computational time. Several concepts for improvements
exist, however, research for improvements in this field is still necessary and
new concepts have to be analyzed and optimized for better use.

The aim of this thesis is to use the inversion and hence addition-subtraction
chains and to analyze when this approach to exponentiation is better than
the traditional approach using only additions and doublings.

In the common literature, addition chain algorithms are evaluated and
judged upon by results about the total length of the addition chains created
and hence about the total number of arithmetical operations. This thesis
gives results separately for every operation involved, because examples from
practical applications show that the computational costs depend on the im-
plementation and differ strongly. Hence, for practical considerations, the
real costs play an important role in choosing the ”right” algorithm. There-
fore, the two most popular algorithms, the binary method and Brauer’s



6 CONTENTS

method, are analyzed in detail in their traditional version in chapter 2, they
are evolved in chapters 3 and 4 into a version utilizing addition-subtraction
chains by using a canonical signed binary digit representation of the expo-
nent, the non-adjacent form (NAF), and the derived methods are analyzed
in detail in chapter 4. As a result, cost comparison inequalities are formu-
lated, which can be used to determine for any practical scenario of costs,
which variant of those two methods is faster on every input or on the aver-
age. The analyses show that the problem to determine the best algorithm,
has no general solution, but depends on a particular application.

Chapter 1 gives a brief overview over the numerous approaches and ideas ex-
ploited to form addition chain algorithms. It also gives a graphical summary
over the generalization steps of the methods, where the most successful are
all generalizations of the basic concept of the 3000 year old binary method.
Much work has been spent on developing and improving existing algorithmes,
hence, most of the ideas and concepts presented within this thesis have been
taken from literature or repeat commonly known results. Citations will be
given wherever possible. This thesis contains a bibliography and an index,
that also serves as a list of symbols. The following results are new to this
thesis and seem not to have been published before:

e All analyses give individual results for the different arithmetical oper-
ations involved. This is not common in the literature.

e In section 3.4, the results of the recursive formula for the number of
NAF strings (3.8) as well as the general explicit formula (3.9) have
not been published before. The special case ¢ = 2 has been shown by
several authors. The results of theorems 3.19 and 3.20 have also been
developed for this thesis.

e The used model of addition chains, which doesn’t allow to exchange
additions and doublings freely and therefore corrects a major problem
of the common model, has not yet been widely used in literature.

e Finally, the analyses of the NAF-based methods in chapter 4 have not
yet been given separated by the different arithmetical operations and
the concept to formulate cost comparison inequalities to pay respect
to the difference in applications is new to this thesis.

Acknowledgements. I would like to thank Prof. Dr. Joachim von zur
Gathen for his support and especially Dr. Michael Nocker, who supported
me while Prof. Dr. von zur Gathen was convalescing.
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Motivation —
elliptic curve cryptosystems

The use of subtractions to generate a chain resulting in the computation of
a given e € N is infeasible in a general approach to exponentiation, because
subtraction implies the need for multiplicative inverses, which may be very
costly to compute and which may sometimes not even exist.

But in the field of cryptography, cryptosystems are also based on other
fields, rings or groups besides the integers Z or integers modulo an integer
n, Zy := Z/nZ. Especially elliptic curves have been used to implement new
cryptosystems. Here, subtraction is a feasible operation, because the cor-
responding operation in the cryptosystem requires no further computations
than the corresponding operation of the addition. To explain this major
motivation of the thesis, the very basic facts about elliptic curves are briefly
reviewed on the next pages (see [GG99] for a deeper insight).

Definition 1 (an elliptic curve)
Let F be a field of characteristic ¢ {2,3}, and let 3 +a -z +b € F[z] be
square-free. Then the set
E = {y’—(2®+a-z+b)=0}U{0O}
= {(u,v): v =ud+a-u+b}uU{0O},
with O denoting the point at infinity, is called an elliptic curve.
a and b are called the Weierstrass coefficients of E.

Elliptic curves happen to have a misleading name, because they have very
little to do with ellipses. The above definition uses the Weierstrass equation
with the Weierstrass coefficients to define an elliptic curve. Besides that
definition, there are also other equivalent ways to define elliptic curves. El-
liptic curves can be provided with a group operation called addition, which
gives an elliptic curve a group structure.

Definition 2 (addition on elliptic curves)

The addition on an elliptic curve, denoted + as usual, can be defined in a
geometrical way:

Let P = (Py, Py) € E be a point on the elliptic curve, then the negative of
P is defined as the point’s reflection at the z-azis, namely —P = (P, —Py)
with —O := O. Note that due to this property, the computation of inverses
for the addition requires no operation (this is important for algorithmic ap-
plications).

To determine the sum P+ Q of two points P = (P, Py),Q = (Qz,Qy) € E,
one has to find the third intersection of the line defined by P and Q with
E. Let this third intersection be S = (Sg, Sy) € E, then P+ Q is defined as
P+ Q = (Sg,—Sy), the reflection of S at the z-azis.

Additionally, there are some special cases, which have to be defined sepa-
rately:

Martin Otto 2001, Diplomarbeit
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1. If P = Q # O, then the line defined by P and Q is considered to be
the tangent line at P and P + Q s the reflection of the second inter-
section of this tangent line with the elliptic curve. Any elliptic curve
is smooth in the geometrical sense (see [GG99]), hence this tangent is

well defined.

2. If Q = O, then the line defined is considered to be the vertical line
through the point P, hence P+ O = —(—P) = P. This also holds if
P=Q=0.

3. If Q = —P, the line defined by P and Q is obviously the vertical line
through P and Q, therefore, the sum P+ (—P) = -0 = O.

Now this definition leads to a commutative group structure on E:

Theorem 3 (a group structure on elliptic curves)
Let E be an elliptic curve and the addition + be defined as in definition 2.
Then (E,+) is an Abelian group.

The basics of the proof to this theorem can be found in [GG99]. Note that O
is the neutral element and for a given point P € E, —P is the inverse. The
closure of F under the addition, the associativity and the commutativity
can easily be checked, preferably using a computer algebra system.

Definition 4 (order of a point on an elliptic curve)
The order d of a point P on an elliptic curve E is the smallest positive

integer such that d- P = O. d is a divisor of the total number of points on
E.

With any elliptic curve, a cryptosystem can now be defined. The following
protocol implements the well known ElGamal crypto scheme using elliptic
curves. It is one example for the use of elliptic curves in cryptography, others
exist, too. The protocol takes the classical cryptographic form, where Alice
and Bob represent the two partners of communication:

Protocol 5 (ElGamal cryptosystem using elliptic curves)

1. Choose an elliptic curve E = {y?> — (z3 +a -z +b) = 0} U{O} over
F, = 7Z/qZ, with a large prime q > 2256 Choose a point P € E with a
very high order d. It is assumed that E, P and the rules of translating
a written text into a point on E are publicly known.

2. Alice chooses a secret key 2 < sp < d—1 and computes the public key
pa=s8a-P

Brauer addition-subtraction chains
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3. Bob translates his message into a point M on E, chooses his secret key
2 <sp <d—1 and computes the tuple (sp-P,M + sp-p4). Bob then
transmits this tuple to Alice. M does not have to be in the subgroup
generated by P.

4. Alice now computes s4 - (s - P) = sp-pa and creates the inverse
—(sp-pa). Then she can get the message M from Bob’s transmission
by adding (M + sg-pa) + (—sB-pa) = M.

Note that in the ElGamal cryptosystem using modulo integers from F, q a
large prime, the operations are exponentiations (see [Sti95], 5.1), while here
the operation is a multiplication of the point P with itself. And because the
negative of a point P = (P, P;) € E has been defined to be —P = (P, —P,)
in definition 2, this inverse can be computed by just changing the sign of
the real number Py. But this change can be done without any arithmetical
operations and hence without any cost.

This fact led to the idea of using subtractions and forming addition-sub-
traction chains to analyze their performance for groups within which the
corresponding operation of the subtraction is free or only little more expen-
sive than the corresponding operation of the addition.

Martin Otto 2001, Diplomarbeit



10 CONTENTS

Brauer addition-subtraction chains



Chapter 1

Addition chains

1.1 Introduction to addition chains

Addition chains are sequences of operations that lead from 1 to a certain
target integer by adding two prior computed values. They serve as an im-
portant concept for the efficient computation of powers and are mostly ex-
amined in close connection to that context, a fashion, which this thesis will
also follow. The current chapter will introduce the basic concepts of ad-
dition chains, limitations, generalizations and a brief overview over several
existing algorithms that create addition chains.

The basic approach is to solve an exponentiation problem as specified in the
following definition.

Definition 1.1 (exponentiation problem)

An exponentiation problem II = (x,e) consists of an exponent e € N and a
base x, which is an element of a given semigroup H. It poses the task to
compute the e-th power of x, denoted by x°.

An exponentiation problem II offers a very general definition of the task to
raise a number to a certain power. That is done to include the different
fields of application, like the exponentiation in R, in F,, = Z/nZ or the ex-
ponentiation on an elliptic curve, where the ”exponentiation” is really the
task to compute a multiple e- P of a given point P. In the later chapters, it
will prove crucial that every exponentiation problem defines different costs
for the operations that are performed during the process of the exponenti-
ation (see definition 2.3 on page 54). These costs will help determining if
and in which cases addition-subtraction chains should replace the concept
of addition chains.

An exponentiation problem can be solved in many ways, the most trivial
being to simply multiply x to itself e—1 times, leading to huge costs for large
e. It gives the upper bound of e — 1 multiplications for an exponentiation
problem, but this bound can be improved significantly.

11
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This thesis will examine the concept of addition chains and later of addition-
subtraction chains as an approximation towards a lower bound for exponen-
tiation problems. But first, addition chains need to be introduced.

Definition 1.2 (addition chain x(e))
(following J. von zur Gathen and M. Nocker in [GNOO], §2)
An addition chain x is a sequence

x = ((5(1),k(1)), ..., (§(r), k(r))),
of pairs of non-negative integers with
0<k(i) <j() <1 Vi<i<r.

The number r of pairs is the length L(x) of the addition chain x.

The semantics of x is defined to be the set S(x) = {ag,a1,...,a,} of integers
such that

ay = 1
a; = i)+ agy) Vi<i<r

The tupel (5(2), k(1)) is said to produce the element a; of the semantics. We
may assume that 1 =ag < a1 < ... <a,.

In the case where j(i) # k(7), the operation is called an addition, in the case
where j(i) = k(i), the operation is called a doubling.

For any set of numbers E = {eg,e1,...,ex} C S(x), x is called an ad-

dition chain for E (an addition chain for eg,...,ex) and may be denoted
as x(ep,€1,...,€ex). x(e) denotes an addition chain for a single number
e € S(x(e)).

This thesis will only be concerned with addition chains for single elements
e € N. In the literature, the semantics of x(e) and the addition chain
itself are usually identified. By separating both aspects, the operations used
to compute the semantics can be differentiated better. As this thesis will
be concerned with the different costs of the two operations addition and
doubling, the given definition has been chosen. Unless explicitly noted, the
elements of the semantics will always be noted in the same order as they are
created by the addition chain, hence, the semantics will always depict the
common notation.

Addition chains for a set E of two or more numbers are sometimes referred
to as addition sequences ([DLS81], [BC90], [Gor98]).

Brauer addition-subtraction chains
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Example 1.3:
Consider the exponentiation problem IT = (z € H, 191), and the follow-
ing addition chain x(191) for the exponent:

x(191) = ((0,0),(1,0),(1,1),(3,2),(3,3),(5,4),(6,4),(7,7),(8,8),
(9,6),(10,9))
S(x(191)) = {1,2,3,4,7,8,15,22,44,88,103,191}.

It is L(x(191)) = 11 and x(191) consists of 6 additions and 5 doublings.
Note that the two values 4 and 8 have been constructed by the doublings
(1,1) and (3,3), but they could also be constructed by additions (2,0)
and (4,0).

This shows that addition chains can be constructed in different ways, an
observation that will play an important role when the costs of additions
and doublings are examined and are not equal, e.g. if a doubling can be
done faster than an addition, doublings should be preferred.

With the given construction of x(191), the exponentiation problem II is
solved using this addition chain by successive computation of the values

z? = (z)?, 2 =z 22, zt = (2%)?, z’ =23 14,
28 = (242, 15 =278, 222 = g7 . 15 2™ = (222)2,
2% = (g4)2, 3103 = g15. 588 191 _ ;88 103,

Example 1.3 shows how the concept of addition chains leads to a solution of
an exponentiation problem. In general, all powers z®, 2%, ... %(() = ¢
have to be computed successively. Because of exponentiation laws, every
new z% for ¢ > 0 can be calculated by multiplying two preceding values, for
example 193 = z15. 288 Tt also implies that the addition chain needs addi-
tional space to save all values which are used in the following computation.
However, the number of arithmetical operations can be reduced significantly
compared with the trivial method mentioned above — example 1.3 only needs
11 operations compared to 190 needed by the trivial approach. Exact upper
bounds will be established in chapter 2, where the two most popular addi-
tion chain algorithms will be examined. But first, let’s examine the problem
of differentiating the two arithmetical operations addition and doubling.

1.1.1 Exchanging additions and doublings

Most authors on this subject used not to differentiate between additions and
doublings at all (see for example [Knu97], [Gor98], [BC90]). Their model
allows the exchange of doublings by additions and, if applicable, additions
by doublings, because the interest is mostly to count the total number of
operations. With this model, it may always be assumed that doublings or

Martin Otto 2001, Diplomarbeit



14 1. ADDITION CHAINS

squarings (as the corresponding operation in the context of exponentiation)
are always cheaper than additions, because every doubling could be written
as an addition, hence, if they are cheaper, doublings would be applied, if
they’re more expensive, they’re performed as additions. This is obviously
not true for additions, because most additions add two different elements,
which cannot be replaced by a doubling in general, for example all odd
elements of the semantics cannot be created using doublings.

This property of the usual model is definitely a problem of the model, be-
cause it doesn’t reflect the real world, in which squarings may of course be
more expensive than additions (see example 2.4(2)) and the assumption that
every doubling may easily be replaced by an addition is not true.

Consider z?, which can be written as = + x, but it is still a doubling, as
doublings are exactly those additions, where an element is added to itself.
The example of elliptic curve arithmetic in definition 2 on page 7 has shown
that the addition of the same point P # O to itself requires the computation
of a tangent, while the addition of two different points P # @ requires
the computation of the line defined by both points. These operations are
different and may require different costs. It is therefore crucial to count
every operation right. The interchange of the two operations is not trivial.
Consider for example for any even value k besides 2 an element & € S(x(e)),
k = 2i for some 7 and some addition chain x(e). k can always be computed
by doubling 7 or by an addition, for example of 1+ (k — 1). But in order to
be able to choose between the two possibilities freely, ¢+ and the addend k£ — 1
need to be present in the semantics (1 is always contained). Only in this one
case both ways to compute k are possible. Thus exchanging a doubling by
an addition may require the rebuilding of the addition chain and may even
require a longer chain. Therefore, exchanging should not be considered as a
general option.

In order to cope with this problem, the addition chain model in this the-
sis differentiates additions and doublings sharply as defined in definition
1.2, providing us with a more realistic model. The idea to differentiate the
operations isn’t new, for example in [EgK90], doublings and additions are
counted separately for the binary and the m-ary method, in [GN97], dou-
blings, additions and ¢-steps are counted separately for g-addition chains
(see definition 1.11). Within this thesis, the substitution of doublings by
additions will only be allowed if it can be shown that this still results in a
valid addition chain according to the definition.

In the operation sensitive analyses, it has to be ensured that no operation
is counted wrong. This is impossible for doublings, as they are defined as
the addition of two equal elements, which cannot be mistaken as a normal
addition, but for additions, it has to be carefully examined that all additions
add two different elements.

The latter can be assured in different ways. If in an addition chain tuple
(7(7), k(%)) of some addition chain x(e), j(i) # k(7), but the corresponding

Brauer addition-subtraction chains
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elements of the semantics are equal, e.g. @) = ag(), a hidden doubling
would occur, counted as an addition. But in this case, not every step of
the addition chain would have created a new element, e.g. step j(i) and
step k(i) would have created the same element in the semantics, hence, the
semantics would contain less elements than possible. This means that if
#S(x(e)) = L(x(e)) +1, there is no hidden doubling possible (note that the
+1 originates in the fact that the semantics always contains the start value
1).

Another way of assuring no hidden doubling is to show that the values a;
created by the addition chain y(e) are strictly monotonously increasing.
This can easily be verified for a special class of steps within an addition
chain, which are the most common steps in most of the presented addition
chain algorithms within this thesis.

Definition 1.4 (star step)

(following J. von zur Gathen and M. Nocker in [GN97], §2.1)

If for a step (§(3),k(7)) of an addition chain x, j(i) # k(z) and j(i) =i —1
or k(i) = i — 1, then step i is called a star step. Note that only addition
steps may form a star step.

Some sources define star steps differently, including doublings of the form
(7(3),k(@)) = (i — 1,4 — 1) (see [Knu97], p.467 or [BBB94)).

Lemma 1.5 (star steps prevent hidden doublings)
If an addition chain x(e) only contains star steps and doublings of the form
(7(4), k(%)) = (i — 1,4 — 1), no hidden doublings occur.

Proof:

The first step in any addition chain is bound to be (0,0), which is such
a special doubling and it creates the element 2, which will be referenced
by the next step. That element 2 is the highest element within the
semantics at that time. Inductively, the assumption that the first &k
steps within x(e) always reference the highest element in the semantics
shows that also step k£ 4+ 1 must reference the highest element a;_1 in
the semantics at that time and by adding to or doubling a;_1, it again
creates a new highest element. Hence, the sequence ag, a1, ..., ar( ()
is strictly monotonously increasing, which proves the claim. O

1.1.2 Some definitions and remarks on the notation

The examination of the concept of addition chains and especially of addi-
tion chain algorithms creates the need to introduce some definitions and
notations that will be widely used within this thesis. One of the basic ap-
proaches in the creation of addition chains is the use of the b-adic expansion
of a number e. For these cases, the following notation will be used.

Martin Otto 2001, Diplomarbeit



16 1. ADDITION CHAINS

Definition 1.6 (b-adic expansion)
For a given number n € N, the b-adic expansion is a sequence (n)y :=
(Mry(n)=15 Ay (n)—25 - - - » 11, M) with n; € {0,1,...,b— 1} such that

Ap(n)—1

n = Z n; - b

1=0

For such a b-adic expansion, the length of (n)y, which is equal to the number
of digits used, is denoted by \y(n). Note that

M(n) = [logy(n)] + 1.

It is assumed that for the highest digit (called the most significant bit in the
case where b = 2) it is ny,(m)—1 # 0, allowing (n)y to be uniquely defined.
If b= 2, the notation can be abbreviated by using A(n) := Ao(n).

In most algorithms, a 2%-adic expansion is used, d € N, where d consecutive
bits are combined to one digit.

The used notation of Gaussian brackets may not be familiar to all readers,
it is clarified in the following definition.

Definition 1.7 (Gaussian brackets)
Let the highest integer n lower or equal to a real number x € R be denoted

by
2] = n,
and let the lowest integer m higher or equal to = be denoted by
[z] = m.
IfreZ,itis |z] =z].
Definition 1.8 (Hamming weight vy (n))
The number of nonzero digits in the b-adic expansion (n)y of a given number

n € Z to a base b € N is called the Hamming weight of n with respect to base
b and it is denoted by vy(n).

1.1.3 Limits and generalizations of addition chains

While each algorithm using addition chains to solve an exponentiation prob-
lem IT establishes an upper bound on the number of arithmetical opera-
tions needed to compute z¢, also a lower bound can be given. In [Sch75],
A. Schonhage proved the following lower bound for the length of addition
chains, which is also a lower bound on the number of arithmetic operations.

Brauer addition-subtraction chains
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Definition and theorem 1.9 (I(e) and a lower bound for I(e))
(following A. Schénhage in [Sch75])

Let l(e) denote the shortest possible length for an addition chain for the
number e € N, then the length l(e) = L(x(e)) of such a shortest or optimal
addition chain for e has the following lower bound:

logy e + logy va(e) —2.13 < (e), (1.1)
where vo(e) denotes the binary Hamming-weight of e.
Proof: The proof can be found in [Sch75].
In figure 1.1, this lower bound is plotted out against the computed exact

values for [(n) for some range of n to allow an impression about the tightness
of this lower bound.

10

-4 I I
0 50 100 150

Figure 1.1: Comparison between I(n) (blue) and the lower bound (1.1) by
Schonhage (red). The green line shows the difference.

Obviously, an addition chain is not unique. The trivial approach to solve an
exponentiation problem II, which just multiplies z with itself e—1 times, also
leads to the trivial addition chain x(e) = ((0,0), (1,0),(2,0), (3,0),..., (e —

Martin Otto 2001, Diplomarbeit



18 1. ADDITION CHAINS

1,0)) with the semantics S(x(e)) = {1,2,3,4,...,e}. Hence, for the same
integer e, there are usually many different addition chains with many differ-
ent lengths. It is most efficient to use an addition chain with the shortest
possible length I(e). Again, such an ”optimal” addition chain is not unique
as the following example shows.

Example:
Let e = 9, then there exist 3 different shortest addition chains of the
length [(9) = 5 with the following semantics:
{1, 2,3,6, 9}
{1, 2, 4,5, 9}
{1, 2, 4, 8, 9}

The observation of the sequence (I(€))ecn reveals a sequence which seems to
be chaotic (see [Thu93]). A selection of Edward G. Thurber’s examinations
of this sequence, where he introduced the term NMC/(e) for the number of
minimal chains, can be seen in table 1.1.

e NMC(e) e NMC(e)
1 1 2466 1042
2 1 2467 2
3 1 2468 1126
8 1 2539 3289
9 3 2540 230110

10 4 25641 6

11 15

Table 1.1: Some numbers of different minimal chains (taken from [Thu93])

The concept of addition chains can be generalized in different ways, all
of which provide valuable facts and suggestions for notation for ordinary
addition chains. The following two definitions will present two different
approaches of possible generalizations of the concept of addition chains. A
third concept, the generalization of addition chains to addition-subtraction
chains will be the major point of interest of this thesis and examined in
great detail in the last chapters.

One approach to generalize addition chains are vectorial addition chains (or
vector addition chains, see [Oli81]). If a set of k values should be com-
puted in a single addition chain, but the values of the addition chains for
each computed target value should not be mixed, the addition chains can
be computed in parallel using vectors from N¥ to represent the set of com-
puted addition chains. Ordinary addition chains are then vectorial addition
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chains with £ = 1. Vectorial addition chains led to new approaches in the
creation of ordinary addition chains, like the development of the continued
fractions method presented in section 1.2.5. The following definition has
been transformed to the notation used for ordinary addition chains.

Definition 1.10 (vectorial addition chain x([e1,ez2,...,ex]))
(adapting the definition by J. Olivos in [Oli81])
A wvectorial addition chain x is a sequence

of pairs of integers with
0<k()<j@)<i Vi<i<r

The number r of pairs is the length L(x) of the vectorial addition chain x.

The semantics of x is defined to be the set S(x) = {@ k41,0 k+2,---, o,
di,..., dr} of vectors such that

@ ppi = bi V1<i<k

a; = dju) + ) V1i<i<Zm,

where 51,52, ceey 5k denote the canonical basis of RE, e.qg. the i-th entry of [_)'z
is 1 and all others are zero.
For any set of elements E = {&y,¢1,...,€x} C S(x), x is called a vectorial
addition chain for E (a vectorial addition chain for €y,...,€x) and may be
denoted as x(€p,€1,...,€k). x(€) denotes a vectorial addition chain for a
single element € € S(x(€)), €= [e1,ea,...,€k).
Example:

Consider the given vector € = [5,25,26]. Then the following sequence is
a vectorial addition chain for € of length 9:

X(é') = ( (01'1)5 (15'2)1 (1,1)5 (353)1 (452)1

(5,5), (6,5), (7,0), (8,6) )
S(x(@) ={ [1,0,0, [0,1,0, [0,0,1],
[Oa 1a 1]’ [1’ 1’ 1]a [O’ 2’ 2]a [0, 4a 4]3 [13 5a 5]a
2, 10, 10], [3, 15, 15], [3, 15, 16], [5, 25, 26] }

The second approach to generalize addition chains concentrates on the op-
erations and not on the type of values to be computed. Ordinary addition
chains offer the addition and the doubling, but in some environments it
is useful to generalize the doubling, which is a scalar multiplication with
2, to a general scalar multiplication. The resulting chains are called ¢-
addition chains or weighted addition chains with scalars (following [N6c01],
p.17). They are motivated by the fact that in finite fields Fyn, ¢ prime,
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the Frobenius automorphism can be computed very fast. The use of the
Frobenius automorphism will be introduced briefly in section 1.2.10. Al-
though g-addition chains are only used within this thesis for the special case
g = 2 (ordinary addition chains), the concept of g-addition chains moti-
vates the notation used for denoting numbers of doublings/squarings and
g-steps/exponentiations with ¢ as defined in definitions 2.1 and 2.2.

Definition 1.11 (g-addition chains x(e, q))

(following M. Nocker in [N6c01], Def. 3.6)

An addition chain with scalar q, or g-addition chain for short, x is a se-
quence of pairs of integers (5(1),k(1)),...,(5(r),k(r)) such that 0 < k(i) <
j(i) < i, or k(1) = —q and 0 < j(i) < i for 1 < i < r. The semantics
S(x) = {ao0,a1,--.,a,} is defined by

ag = 1 and
ai = aju +ape of k(i) #—gq, and
a; = q-qj4) if k(i) = —q.

A pair (j(i), —q) 1is called a g-step and a pair (j(i),k(i)) with k(i) # —q a
non-q-step.

L(x) = r denotes the length of the g-addition chain. For a given number
e € N (a given set of numbers E = {eg,e1,...,ex} CN), a g-addition chain
for e (E) may be denoted as x(e,q) (x(E,q) = x(eo,€1,--., €k, q))-

Note that for ¢ = 2, the notation (j(z),—2) in the given definition is equal
to the notation (j(2), (7)) defining a doubling step in definition 1.2.
Example:
Consider the exponentiation problem II = (z € H,219) and a given
scalar ¢ = 4. Assume the 4-ary expansion of 219 to be given as (219)4 =

(3,1,2,3). Then a g-addition chain x(219,4) can be formed as

X(2193 4) = ((O, O), (1, O), (2, _4)’ (35 0)5 (4, _4)a (5, 1), (Ga _4)a (75 2))
S(x(219,4)) = {1,2,3,12,13,52,54, 216,219}

with 12 =4-3, 52 =413 and 216 = 4 - 54 being created using g-steps
(and additions for the remaining elements). For further details on this
example refer to example 1.13.

These generalizations ease the achievement of some results about addition
chains. First, the limits of the concept of addition chains can be analyzed
by determining the complexity class of the problem of finding a shortest
addition chain.

The fact that there are sometimes so many different shortest addition chains
for a given number e seems to ease the search for such a shortest addition
chain. Unfortunately, the very similar problem of the search for a shortest
addition chain for several e; in one chain has been proved to be NP-complete
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(see [DLS81]). Although the result has not yet been verified for addition
chains for one value e, this problem is commonly also expected to be NP-
complete, making it impossible to compute such a shortest addition chain
in polynomial time (under the widely accepted assumption that P # NP).
Therefore it is necessary to develop approximation algorithms, which at least
produce optimal results for a satisfying number of inputs or which output
addition chains, whose length is close to I(e).
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1.2 Algorithms for addition chains

This section provides a brief overview of the existing addition chain algo-
rithms solving exponentiation problems. It is intended to introduce concepts
rather than analyses and to show generalization lines in the development of
such algorithms. Bibliographical references will be given to suggest further
reading. Some of the presented algorithms will be analyzed in detail in
the second chapter and will be used to introduce and explore the concept
of addition-subtraction chains later. Most of the methods introduced have
originally been described with a different definition of addition chains, not
differentiating between the addition chain and its semantics. These meth-
ods have been modified in their notation for comparison according to the
definition used within this thesis.

The following algorithms are the most commonly known addition chain al-
gorithms:

e The binary method (also known as repeated squaring)

e The m-ary method / Brauer’s method

e Sliding window methods

e The factor method

e The continued fraction method / Euclid’s method

e Knuth’s powertree method

e The BGMW-algorithm

e The data compression method by Yacobi

e The data compression method by Bocharova and Kudryashov

e Other Approaches (Frobenius-automorphism, normal bases)

1.2.1 The binary method (repeated squaring)

The binary method is the oldest known efficient algorithm for the compu-
tation of powers, it has been described as early as 200 B.C. in Pingala’s
Chandah-sitra-writings in classical Indian mathematics, the classical Arab
mathematician al-Uqlidist of Damascus described the method in AD 952 for
z = 2. See [Knu97], or directly [Dat35] p. 76, [Sai75] pp. 341-342 und [Sac79]
pp- 132-136 for further details on the history of this method.

idea: The binary method is based on the binary expansion of the exponent
e. It creates z°¢ by starting with z and squaring (”.S”) the accumulated
result for every binary digit and multiplying (" M”) it with the base
x for every nonzero digit.
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/binary method factor method the Powertlb

continued fractions method

m-ary method / Brauer’s method

sliding window methods BGMW method

signed binary sliding window methods data compression approaches

o /

Figure 1.2: Evolution of addition chain methods

Example 1.12:

(1) Consider the exponentiation problem II = (z € H,219) to demon-
strate the binary method:

(219)= ( 1 1 0 1 1 0 1 1)
NN N N N N N
2219 = x SM S SM SM S SM SM

= (%) -2)?)? - 2)* - 2)*)? - 2)* - @
x(219) = ((0,0),(1,0),(2,2),(3,3),(4,0), (5,5), (6,0), (7,7),
(8,8), (9,0), (10, 10), (11,0))
S(x(219)) = {1,2,3,6,12,13,26, 27, 54,108,109, 218, 219}
L(x(219)) = 12

(2) The smallest counterexample to the assumption that this method is
optimal is e = 15, (15) = 1111:
binary method computes {1,2,3,6,7,14,15} - 6 Operations
an optimal chain computes {1,2,3,5,10,15} - 5 Operations
(there is only one optimal addition chain of length 5 for e = 15)

Martin Otto 2001, Diplomarbeit



24 1. ADDITION CHAINS

The binary method is based on the binary expansion of the exponent e and
squares the accumulated result for every binary digit and multiplies it with
the base z for every nonzero digit. The method has been regarded as optimal
for a long time ([Knu97], p.463), which it isn’t. Example 1.12(2) shows the
smallest counterexample e = 15. Although, as doublings are the fastest way
to increase the value of the numbers, it is optimal for all powers of 2.

The binary method requires A(e) + v(e) — 2 arithmetical operations, where
A(e) denotes the length of the binary expansion and v(e) denotes the binary
Hamming-weight of e. A detailed analysis of this method will be shown in
section 2.2.

1.2.2 The m-ary method / Brauer’s method

The m-ary method (see [Knu97], [Bra39]) is a generalization of the binary
method. It allows the exponent e to be in any m-adic expansion. Brauer’s
method is a special case of the general m-ary method, where special bases
of the form m = 2¢ are used to combine d digits of the binary expansion to
create one digit of the 2%-ary expansion.

idea: The m-ary method is based on the m-adic expansion (e),, of the ex-
ponent e. It creates € by starting with z and raising the accumulated
result to its m-th power (”S™”) for every m-adic digit and multiplying
("M;”) it with the value of the current m-adic digit for every nonzero

digit.
The method requires the precomputation of the values of the m-adic
digits z2,z>,...,2™! and a strategy to raise the accumulated re-

sult to its m-th power (using the binary method, the m-ary method
recursively or an optimal addition chain if m is small enough).

As the m-adic expansion is shorter than the binary expansion, its
Hamming-weight is smaller on average, resulting in less multiplica-
tions. However, the additional need to precompute certain values
arises.

Example 1.13:

Consider the same exponentiation problem II = (z € H,219) as in ex-
ample 1.12(1) of the binary method and the window length d = 2, e.g.
m = 22 = 4, for the m-ary method. The exponentiations with 4 will be
performed using two squarings, because this is optimal according to the
last section.
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(219); = (11 01 10 11 )
(219)4 = ( 3 1 2 3 )
N A
.’13219 = X3 Sle 52M2 S2M3
56219 — x2’ $3’ ((( .’123 )4_ T )4_ 332 )4_ xs
x(219) = ((0.0), (10),  (2.2), (3:3), (40), (5:5), (6:6), (7.1),
(8,8), (9,9), (10,2))
S(x(219)) = (1, 2, 3, 6, 12, 13, 26, 52, 54, 108, 216, 219)

L(x(219)) = 11

It can be seen that this method needs one operation less for e = 219 than
the binary method (see example 1.12(1)). The elements before the gap
belong to the precomputation step.

It is easy to see that the binary method is a special case of the m-ary method
with m = 2. In most practical applications, Brauer’s method (m = 29) is
used and an optimal value for d can be determined. This will be examined
in detail in section 2.3. The Brauer method requires

o (] (529

arithmetical operations on average (see section 2.3.5).

1.2.3 Sliding window methods

Sliding window methods are generalizations of Brauer’s method, the m-ary
method for m = 2¢. They have been introduced by J. Bos and M. Coster in
[BCY0] and have been modified and analyzed by a number of authors, see
for example [Kog¢95], [PPC99] or [Gor98].

idea: A close look at Brauer’s method shows that the windows are created in
the same manner for every binary expansion, possible special proper-
ties of the binary expansion are not exploited. The sliding window
methods determine windows in a flexible way based on the binary
expansion and aim to reduce the average number of operations by
taking advantage of the pattern of the binary expansion.

While the length of the binary expansion always accounts for a fixed
number of squarings, the number of multiplications is caused by
the number of nonzero windows, which this method tries to reduce.
Therefore, sliding window methods allow zero windows to be of any
length, while only nonzero windows are restricted to a certain (maxi-
mal) length.
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The nonzero windows are determined according to the binary expan-
sion. The current nonzero window slides across the binary expansion
from one side to the other and initiates a new nonzero window when-
ever a nonzero digit occurs.

There are basically two different sliding window methods known, the
constant length nonzero window method, that requires nonzero win-
dows to be exactly of a certain length, and the variable length nonzero
window method, that requires nonzero windows to be equal to or less
than a certain length.

Example 1.14:

(1) Consider the exponentiation problem IT = (z € H,219), that has
also been used as an example for both the binary and the m-ary
method. Let the window length be d = 2 and let the nonzero win-
dow length be required to consist of exactly d bits.

(9= (11 0 11 0 11 )
values : 3 0 3 0 3
LN NN N
7?19 = x3 st S2M; St S2M;
2219 — 23, (28 )2)* 28 )2)*. o8
x(219) = (( 0), (1,0),  (2,2), (3,3), (4:4), (5,2), (6,6), (7,7)
)

(
(8,8), (9,2)
S(x(219)) = {1,2,3, 6,12,24,27,54,108,216,219}
L(x(219)) = 10

This example shows that for this example, the constant length nonzero
window method with d = 2 needs one operation less than the m-ary
method with d = 2 (see example 1.13).

(2) Another example compares the use of both kinds of sliding window
methods for a longer binary expansion.
Let (e)e = 1010000011001001101000001100010010100011101 (e =
5,524,620,191,005), then with a constant length nonzero window
method with d = 5 digits, the binary expansion would be parti-
tioned into the following windows (nonzero windows framed):

| 101]00000(11001]0[01101]0[00001[10001]00101]000|11101]

Now assume a variable length nonzero window method is used,
which stops nonzero windows whenever runs of § = 2 or more zeros
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occur. The binary expansion would then be partitioned as follows
(nonzero windows framed):

[ 101]00000[11]00[1]0[01101]00000[11]000[1]00[101]000[11101]

While the constant length nonzero window method creates 7 nonzero
windows on this input, the variable length nonzero window method
creates 8. This is not something extraordinary, because analyses
show the constant length nonzero sliding window method to be bet-
ter on average (see for example [Ko¢95] and [PPC99)).

The cost analyses of both variants of the sliding window method can be
found in [PPC99]. The methods require

291 4 Xg(e) =1+ NWIN — WLEN

arithmetical operations, with NWIN denoting the average number of non-
zero windows and W LEN denoting the length of the leftmost window (fol-
lowing the notation in [PPC99]). The values for both NWIN and WLEN
can be computed using Markov-chains. The analyses result in summation
formulas, which can be found in [PPC99]. The results show that the m-ary
method is inferior to this approach on average.

1.2.4 The factor method

Another method based on a different idea than the methods mentioned
before is the factor method (see [Knu97]). It uses the prime factorization of
the exponent to compute an addition chain.

idea: If e is not prime, it is e = p - ¢ for some prime p and z€ can be
computed as z¢ = (zP)4. If e > 3 is prime, the same approach can
be utilized computing 2¢ = ¢~ - z. This basic approach can be used
recursively for p and ¢ until both are 1 or 2.

If the prime factorization of e is given, e.g.

T

i

€= Hpila
i=1

then z° can be computed by subsequently finding an addition chain for
each p; using the basic approach mentioned above and then repeating
that chain k; times (starting with the result of the last chain for the
usual starting value 1), before exponentiating according to the next
p- This will lead to a computation of z°.

For the sake of a good computational behaviour (to let accumulating
factors be as small as possible), assume that the prime factors are
sorted ascending by value.
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Example 1.15:

(1) Consider the example IT = (z € H,219) used as a standard example
before. The addition chain x(219) is created during the process and
x' is used to denote the accumulating addition chain. The prime
factorization of 219 is

219 = 3.73 = 2?19 = (23)7
Compute y; := 2 first: (resulting chain)
yr= 2% = 22z = x'=((0,0),(1,0))
Compute z := y!® next:
= 7241 S z=yB =yl2.qy
Compute z; = y!? using the factor method recursively:
2= 2.3 = y1* =((((11)*)*)°)°
5 recursive steps are necessary: (resulting chains)
Yo = y = x'=((0,0),(1,0),(2,2))
Y3 = Y5 = X' =(-.(2,2),(,3)
Yo = Y3 = X' =(-.(3,3),(4,4)
Ys = yi =vi-y = X' =(..,(44),(5,5),(6,5)
Yo = v =viys = X' =(..(65),(7,7),(87)

That results at the end of the recursion for 72 to:
"E219 = yIZ'yl =YYy = X, = ((050)5(150)5(252)7(353)a
(4,4),(5,5)

(8,7),(9,2)

~—

And therefore
x(219) = ((0,0), (1,0), (2,2), (3,3), (4:4), (5,5), (6,5), (7,7),
(8,7), (9,2))
(1,2,3,6,12, 24,48, 72,144, 216, 219}
10 (which is the optimal result for e = 219)

5(x(219))
L(x(219))

(2) Now consider the exponentiation problem II = (z € H,33). The
factor method for e = 33 works as follows:

33 = 3-11 = 233 = (z%)LL

Compute y; := 3 first: (resulting chain)
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y1 = 23 = 2z = x' = ((0,0),(1,0))
Compute z := yi! next:

1= 10+1 = 2=yt =yl0.qy
Compute z; = y1° using the factor method recursively:

0= 2.5 = y1’ =(17)°
2 recursive steps are necessary: (resulting chains)

Yo = Y = x'=((0,0),(1,0),(2,2))

ys = v =) = X =(-.(2,2),83),4,4),

(5,3))

That results at the end of the recursion for 10 to:

3733 = y%o'yl =Y3-Yy = X,: ((573)7(672))
And therefore

x(33) = ((0,0), (1,0), (2,2), (3,3), (4:4), (5,3), (6,2))
S(x(33)) = {1,2,3,6,12,24, 30,33}
L(x(33) = 7

This second example shows that the factor method is also not op-
timal, because the binary method creates an addition chain x(33)
computing S(x(33)) ={1,2,4,8,16,32,33} with L(x(33)) = 6. It is
the smallest example for a number, where the binary method excels
the factor method (see [Knu97], p. 463).

The factor method obviously has one great disadvantage, that prevents its
use in practical applications: It requires the prime factorization of the expo-
nent e and that of intermediate values like e—1 to be known in advance. But
as the computation of the prime factorization of an integer is still considered
a good candidate for the complexity class N P, there is no known algorithm
to compute the prime factorization of a given integer in polynomial time yet
(and it may in fact be impossible if the assumed complexity proves right).
Whole cryptographic systems (like RSA) depend on this assumption. There-
fore, the factor method has not been widely used in practical applications,
which use exponents e of 200 and more binary digits, making it impossible
at the moment to compute the prime factorization at all.

1.2.5 The continued fractions method / Euclid’s method

The idea to use continued fractions to create addition chains was presented
in [BBBD89] and evolved in [BCHM95]. The authors developed this method
while looking for an efficient way to compute monomials of the form z%y®
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for some a,b € N and it is based on vectorial addition chains (see definition
1.10).

idea: Given a vectorial addition chain for a vector € that contains an ele-
ment e := ¢€;, for which an addition chain is seeked, the projection of
the i-th component of the vector addition chain produces an addition
chain for e, if all zeros and repetitions are deleted. Recall for example
the vectorial addition chain from example 1.1.3:

X(é) = (('13'2)’ (1’0)7 (171)’ (333)a

(4’2)7 (5’5)7 (675)’ (77'2)3
(8,6))

S(x([5,25,26])) = {[0,0,1], [0,1,0,  [1,0,0], [0,1,1],
[1,1,1], [0,2,2], [0,4.4], [1,5,5],

2,10 ,10], [3,15,15], [3,15,16], [5,25,26]}

It contains with the highlighted elements the semantics of an addition
chain for e = 25. The derived addition chain is

x(25) = ((0,0), (1,1), (2,0), (33), (43), (5:4))
S(x(25)) = {1,2,4,5,10,15,25}
L(x(25)) = 6 (which is optimal)

The use of continued fractions of the form ¢ = [u1,us, ..., u;] denot-
ing
a 1
usz + 1
.. + _
Uk

now leads to an addition chain for (a,b) using the Euclidean Al-
gorithm (see [GGY99],84.6) to compute the sequence [u1,us, ..., ux],

which is
= ui-b+n with r{ < b
b = wug-ri+19 with 79 < 7y
Tk—2 = Ug* Tg—1

With these values known, the following two definitions of concatena-
tion operations for addition chains can be used. The definition has
been modified in its notation to adapt to the enhanced definition of
addition chains:
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Definition 1.16 (concatenation of addition chains)

(original definition by Bergeron, Berstel and Brlek in [BBB94])

Let x1(a) = ((7(1),k(1)), (5(2),k(2)), ..., (i(m), k(m))) and x2(b) =
((s(1),%(1)), (s(2),(2)),...,(s(n),t(n))) be two addition chains for a
and b respectively and let ¢ € N. Then the two operators @ and @ act
on x1, X2 and c as follows. Assume that (j(m),k(m)) produces a:

xi(a) ® x2(b) := ((i(1),k(1)),...,(i(m), k(m)), (1.2)
(m,m) + (s(1),2(1)), ..., (m,m) + (s(n), t(n)))
with (m,m) + (s,t) = (m + s,m +t)

[ ((5(1),k(1)), ..., (§(m), k(m)), (m,p))
(4(p), k(p)) produces c
((5(1),k(1)), ..., (i(m), k(m)), (m,0)) (1.3)
if c= )

i

xi(a)®c =« e
x1(a)

\ if ¢ S(xi(a))

Obviously, x1(a) ® x2(b) gives an addition chain for a - b, because
(j(m), k(m)) produces a and S(x2(b)) contains b, if started with 1,
e.g. bo =1, and therefore a - b if started with by = a. x1(a) ® ¢ gives
an addition chain for a + ¢ iff ¢ appears in x1(a).

Using this definition, any equation of the Euclidean decomposition
can be used to create an addition chain. For the i-th line of the
Euclidean Algorithm, it is

Ti—2 = Ui Ti—1 +7T;

and hence

x(ri—2) = x(ri-1) ® x(ui) ® ri.
The arguments of the ® operator have been switched compared to the
usual Euclidean equation notation to ensure that r; appears in the
resulting addition chain and therefore the @ operator really outputs
an addition chain for 7;_o.

All chains for all values of r; are known from the line below the i-th
line (whose addition chain is, similar to the Extended Euclidean Algo-
rithm, computed first), just the addition chains for the u; values and
for the last r,_1, the greatest common divisor, have to be computed
separately — using the continued fraction method recursively.

To deduce an algorithm that only requires a single integer e as input,
a good choice for b must be made. In [BCHM95], the authors suggest
using

b=a div 2LA22(8)J, (1.4)
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with div returning the quotient of the division with remainder. The
suggested algorithm involves some special cases: The values for any
e = 2J for some j are computed separately with the addition chain

x(29) =(1,2,4,...,2%), (1.5)

because their optimality is known. This saves some computational
effort in the recursion. To end the recursion, addition chains for the
first three values are provided, e.g.

x(1) =0 x(2) = ((0,0)) and x(3) = ((0,0), (1,0)). (1.6)

Note that x(1) is the empty chain, because every addition chain’s
semantics contains 1.

Besides the given choice for b, many other choices are possible, some
of them representing already known methods, such as the binary
method. A number of different strategies to determine a suitable
value for b can be found in [BBB94].

Example 1.17:

(1) Consider the running example IT = (z € H,219) to demonstrate this
algorithm. First, compute an appropriate value for b according to
formula (1.4) as

Ao

b=a div 2l732) = 219 div 2* = 13.

Then compute the Euclidean decomposition of (219,13):

Euclidean Algorithm resulting chain concatenation:
219 = 16-13+11 x(219) = x(13) ® x(16) & 11
13 = 1-11+2 x(13) = x(11) ® x(1) & 2
11 = 5-2+1 x(11) = x(2) @ x(5) ® 1
2 = 21 x(2) = x(1) ® x(2)

This shows the continued fractions decomposition of % to be

[16,1,5,2]. The greatest common divisor of 219 and 13 is 1.
Now addition chains for 1, 2, 5 and 16 must be computed recursively,

leading to

x(16) = ((0,0),(1,1),(2,2),(3,3)) by special rule (1.5)
x(1) = () by special rule (1.6)
x(2) = ((0,0) by special rule (1.6)
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And as 5 =2-2+1 in the recursive application of the algorithm, it
is

x(5) = ((0,0) ® ((0,0)) ®1 = ((0,0),(1,1),(2,0))
With these values known, x(219) can be computed easily:
x(11) = ((0,0)) ®((0,0),(1,1),(2,0)) &1
= ((0,0),(1,1),(2,2),(3,1),(4,0))
S(x(11)) = {1,2,4,8,10,11}
x(13) = ((0,0),(1,1),(2,2),(3,1),(4,0)) ® () ®2
= ((0,0),(1,1),(2,2),(3,1),(4,0),(5,1))
S(x(13)) = {1,2,4,8,10,11,13}
x(219) = ((0,0),(1,1),(2,2),(3,1),(4,0),(5,1))

® ((0,0), (1,1),(2,2),(3,3)) ® 11
= ((0,0),(1,1),(2,2),(3,1),(4,0), (5,1),(6,6),(7,7),
(8,8),(9,9),(10,5))
S(x(219)) = {1,2,4,8,10,11,13,26,52,104, 208,219}
L(x(219)) = 11

The example shows how the algorithm works for e = 219. It also
shows that the algorithm is not optimal, because we saw in example
1.14(1) a chain for 219 with length 10.

In [BCHMY5], the authors state that this method is better than the binary
method on average and its worst case is equal to the binary method’s average
case. Exact analyses about the average number of arithmetical operations
depend upon the chosen strategy to determine a value for b. See [BBB94]
for some possible strategies.

Although the arithmetical operations are not counted separately for addi-
tions and doublings in this example, it is interesting to note that no hidden
doublings occur. While the used operation of concatenating two addition
chains always yields the danger of producing such hidden doublings, which
may be counted as additions falsely, the addition chains produced by the
continued fractions method always produce chains solely consisting of star
steps and doublings of the form (i — 1,7 — 1) (see [BBB94], p.24 and def-
inition 1.4). For such chains, lemma 1.5 ensures that no such miscounting
occurs.
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1.2.6 Knuth’s powertree method

This method has been described by Knuth (see [Knu97]) and uses a tree
structure to compute addition chains for all numbers up to a given number

e.

idea: The powertree is a tree structure that stores values in a way such that
the path from the root to the corresponding knot forms an addition
chain. To achieve this, the tree must be build up large enough to
contain the searched value for e.

/
19

38

/\

57 76

Figure 1.3: Continuing
the powertree

The tree is build by initializing the root
with the value 1 and by building the k-
th level from the (kK — 1)-st level in the
following way: take every number on
the path from the root to the current
knot and attach the sum of that num-
ber and of the value of the current knot
to the current knot, unless it already
appears somewhere in the tree.

Consider continuing to build the tree depicted in figure 1.4. Then for
the leftmost leaf, e = 38, the following values might be attached to
that leaf: (38+1, 38+2, 3843, 3845, 38+7, 38+14, 38+19, 38+38).
But as (39, 40, 41, 43, 45, 52) already appear somewhere else in the
tree, only 57 and 76 may be attached to 38 as new leaves. The result

is shown in figure 1.3.

Example 1.18:

(1) The running example e = 219 is not easily presented as an example
for the powertree, for the tree has a depth of 10 levels and sev-
eral hundred knots. Figure 1.4 shows Knuth’s example (compare
[Knu97]) of the powertree with depth 7. The value for e = 219 lies
down the path highlighted in the figure and it gives the addition

chain

x(219) = ((0,0),(1,0),(2,2),(3,2), (4,4), (5,4), (6,6), (7,7),

(8,2),(9,8))

S(x(219)) = {1,2,3,6,9,18,27,54,108,111,219}

L(x(219)) = 10.
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Figure 1.4: The powertree up to level 7 (taken from [Knu97], p.464)

(2) As it can be seen in figure 1.4, addition chains are easily taken from
the powertree once it has been constructed. The following addition
chains are immediate from the tree:

= ((0’ 0)’ (1’ 0)’ (2’ 1)’ (37 3)’ (4a 3))
= {1,2,3,5,10,15}

)
)
x(33) = ((0,0),(1,1),(2,2),(3,3),(4,0), (5,4))
) = {1,2,4,8,16,17,33}

As one might imagine, the building of the powertree involves a lot of memory
and a lot of work, especially for huge values for e. Nevertheless, for small
values of e, e.g. e < 100,000, the method gives remarkably good results. As
Knuth states (see [Knu97], p.464), for the values of e < 100,000, this method
excels the factor method in almost 89% of the cases, ties in about 11% and
only loses 6 times. The latter also shows that the powertree method is not
optimal.

1.2.7 The BGMW-algorithm

The exponentiation approaches discussed up to this point always assume a
new exponentiation problem every time they’re applied. But in practical
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applications, there are a number of cases, where this is not true, because
the same basis has to be raised to different powers for a number of times.
This problem occurs for example if the Diffie-Hellman key exchange protocol
is used (see [Sti95],88.4). In cases like these, precomputation may save
a substantial part of the operations usually needed to solve a number of
similar exponentiation problems. This was first suggested by E. F. Brickell,
D.M. Gordon, K.S. McCurley and D.B. Wilson (BGMW) in [BGMW?92],
a summary can be found in [Gor98]. [GNO0O] gives comparisons to other
addition chain algorithms. The description of the idea follows [Gor98].

idea: The BGMW algorithm contains two ideas, precomputation and the
use of special number systems.

The basic idea is to use a well known addition chain algorithm, e.g.
the binary method or the m-ary method and precompute a number
of powers of the given base of an exponentiation problem II = (z €
H, e € N). These values are stored and can be used during the main
exponentiation process. If a base is repeatedly raised to some powers,
the precomputation step has to be performed only once, thus saving
a huge number of steps successively.

A simple application is to use the binary method and to precompute
all 2¥-ary powers of the base z. The binary method will then be
slightly modified by not using repeated squaring but just multiplying
the appropriate powers of the base indicated by the binary expansion.
This requires the same number of multiplications as the traditional
binary method presented in section 1.2.1, but no squaring at all. See
example 1.20(1) for an application of this technique.

An application using the m-ary method would either precompute and
store all powers acmk, or it may even use a more sophisticated method
described by BGWM, where powers with equal coefficients are mul-
tiplied together and then raised to powers:

Let h € N be some bounding number (which will determine the used
number system), then for a set of appropriate choices of n; (usually
powers of a certain base b, e.g. n; = 2' allows the binary expansion),
the exponent e can be written as

-1
e = Zei -1 with 0 < e; < h for all i. (1.7)
i=0

Now z€ can be written as a distinct coefficient decomposition as

h
z¢ = Hcdd, (1.8)
d=1
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where the ¢4 values represent the powers with equal coefficients

cqg = H ™.
d

iie;=

Gordon ([Gor98]) states that the formula (1.8) can be computed effi-
ciently using only [ + h — 2 multiplications using the formula

h
Hcdd = ¢p-(ch-chot) - (Ch-Chot1---c1). (1.9)
d=1

This formula can be easily implemented using the following iteration,
where the value of b is constantly increased, thus for every loop, b
takes the value of the next factor in brackets of the above formula
(1.9). Note that the values 2™ are precomputed and accessible.

Algorithm 1.19 (BGMW computation of z¢)
(following [BGMW92] p. 202)
Input: the base z, the exponent e and the BGMW decomposition
of the exponent e from formulas (1.7) and (1.8).

Output: z°
00 b:=1
01 a:=1

02 from d = h downto 1 do

03 for each i such that ¢ = d do
04 b:=b.x"

05 a:=a-b

06 return a

The second idea, to use special number systems, arises from the fact
that this algorithm works for any set of n;’s, which leads to the possi-
bility to represent all integers in a desired range. BGMW themselves
suggest some number systems, e.g. h = m — 1 and {n;} = {m’}
(m-ary method), or quite unusual systems like h = 8 and {n;} =
{+1,-2,9,10} - {29} ([Gor98] p.141). The use of these so-called
basic digit sets for a certain base may improve the ratio between the
operations saved and the use of memory.

The common values (see [GN00]§3) are {n;} = {b'} with the base b
determined from

p = 9llogzA2(e)—2log, logy Aa(e)|+1
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Example 1.20:

(1) Consider the exponentiation problem II = (z € H,23). Suppose
the idea of precomputation should be used and the binary method
should be applied as the main exponentiation algorithm. As \9(23) =
6, the values 1,:1:20,5621,:622,3523,:1:24 are precomputed and stored.
As the binary expansion of 23 is (23)2 = 101110, the modified bi-
nary method looks up the values for the four ones as $24,$22,x21
and 72°. The result can be computed using only multiplications as

223 = 16 . 4 2 g1 16444241

This approach leads to the addition chain

x(23) = ((0,0),(1,1),(2,2),(3,3),(4,2),(5,1),(6,0))
{1,2,4,8,16,20, 22,23}

n
~~
o
—

[\&]

[IV)
N
N

[

with length L(x(219)) = 7.

(2) Suppose the exponentiation problem Il = (z € H,219), to be given.
Assume that the improved m-ary approach should be used for ex-
ponentiation.

Let the number system be h = 3 and {n;} = {(22)*} (forcing a 4-adic
expansion of 219). Then the BGMW algorithm works as follows:

h = 3 = precompute: z*, :c42, ¥
(219)s= (11 01 10 11 )
values : 3 1 2 3
cq: c1 = ¥ cy = ' c3 = Y
216 $4 265

1.9
z219 (L9 c3-(e3-ca)(e3-ca-cr)

The last line is now computed using algorithm 1.19:

b=1 a=1

b =z% . 74" = 7 a = 1%

b = 4% . 4% . 4 — 69 q = 65, ;69 — 134
b=z 22 . 4 g8 = 85 4 = 134, 85 — ;219

The resulting addition chain x(219) is therefore:
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x(219) = ((0,0), (1,1), (2,2) , (3,3), (44), (5,5), (6,0),
2

(

(77 )’ (874)’ (9’8)7 (1079))

S(x(219)) = {1, 2,4, 8,16, 32,64, 65, 69, 85, 134, 219}
L(x(219)) = 11

For this input, the BGMW method produces a different chain than
the ordinary m-ary method (see example 1.13) with the same length.
Again, this method is not optimal, as the table in appendix A lists
an addition chain of length 10 for e = 219. But if this exponentiation
problem is part of a sequence of exponentiations of z, the precom-
putation would have been done before, hence, only the 5 multipli-
cations would have to be performed — giving savings of more than
50% !

Note that the values before the gap are values that have been com-
puted during precomputation using only squarings, all values after
the gap have been computed using algorithm 1.19, where only mul-
tiplications are used. The shaded values are values that are needed
in order to precompute the base multiples, because the operation
to raise a number to its 4-th power can only be done using two
squarings. Therefore, the shaded values are not used within the
algorithm, they’re — from that perspective — created in vain.

The BGMW method specializes the m-ary method in assuming that some
powers are precomputed and are stored for look up for a number of follow-
ing exponentiation problems with the same base x. In cases like these, the
method is obviously a very good choice, but it is not in a general appli-
cation, where exponents and bases are assumed to be unpredictable (for a
comparison of some values see [GN0O], table 4.2). The BGMW method also
generalizes the m-ary method in allowing more number representations than
the usual m-adic expansions, which are required for the m-ary method.

As this thesis is focused on general exponentiation problems, without a
pattern in the choice of bases, the BGMW method is not closely examined.
The BGMW method works for any group and it can be parallelized to
save additional time. Although, besides its use for repeated bases, another
disadvantage of the BGMW method is the use of memory. It can be adapted
to deal with restricted memory, but it still needs a lot space to store all
precomputed values and it tends to use too much memory. These facts, as
well as approaches to solve this problem, are described in greater detail in
[Gor98], §5.2.

Results about the costs state that the number of arithmetical operations
including the precomputation is at most

)\2(6)

(1+0(1)) - 710& WE)

+ )\2(6),
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according to [GNO0O], table 4.1.

1.2.8 The data compression method by Yacobi

Y. Yacobi suggested exploiting the similarities between exponentiation and
data compression. He notes that there are two main similarities, the use
of repetitions — frequent messages, which are assigned short codes in data
compression, and frequent computations, which should be reused in expo-
nentiation — and the use of small differences between subproblems — sending
the difference to a previous message (A modulation) in data compression and
using the exponentiation law z"t2 = z" - 2 in exponentiation ([Yac90]).
He applies the well known compression algorithm of Lempel and Ziv (see
[ZL78]) to build an exponentiation algorithm.

The method is described in [Yac90] and [Yac98], comparisons to other ad-
dition chain algorithms can be found in [GNO0O], §4.

idea: The most promising approach to reduce the number of operations in
exponentiation is to reduce the number of multiplications. Most algo-
rithms use precomputation in order to reduce operations in the main
exponentiation step. Data compression algorithms try to optimize
the needed number of precomputation steps by choosing an optimal
set of precomputed values.

While the m-ary method and the constant length nonzero window
method use windows of a fixed length, which do hardly adapt to
the structure of the input, and the variable length nonzero window
method is also bounded in its choice for the length of windows, the
approach of Yacobi does not impose restrictions on the length of win-
dows and combines the precomputation step with the partitioning of
the input into windows. In doing this, it assures to precompute only
those values, which actually appear as windows in the partition.

This task is achieved by building up a compression tree in the precom-
putation step, where window values are stored. This is done exactly in
the same way the Lempel-Ziv algorithm suggests: The binary expan-
sion of the exponent e is scanned from right to left and windows are
created on the fly. A new window W; starts with the digit 1 (tailing
zeros are skipped) and while scanning the digits of the input the tree
is traversed accordingly. If a leaf is reached, the next digit scanned
closes the new window W; and creates a new child of the leaf. The
new node in the tree gets the value 2", which is the parent value
if the last digit scanned was 0, or 22" - W' if the last digit scanned
was 1, where k is the current depth of the tree (the number of digits
within the new window) and W' is the parent window pattern. The
node is named after the window pattern (W;)s. For this step, several
values of z2' have to be precomputed explicitly, too.
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The construction of the compression tree is demonstrated in example
1.21(1). The precomputation results in a partition of the binary ex-
pansion into several windows W;. The main exponentiation is then
done in the same way as it was presented with the m-ary method
and the sliding window methods, the result accumulates by squaring
as many times as there are digits within the next window plus the
number of tailing zeros. This result is multiplied with the precom-
puted value of the next window. Consider the resulting sequence of
windows to be

(G)Y = (W)\y(e)—la OZAY(E)_I ) W)\y—Qa OZ/\Y(E)_2’ ey WOa OZO)’

and the length of the i-th window plus tailing zeros of the (i + 1)-st
window to be L; = #W; + z;11, then the exponentiation problem
IT = (z,e) is solved as

25 = (o (@@ )2 O Wy may2 O e,

Example 1.21:

(1) Consider the exponentiation problem IT = (z € H, e = 54,962, 861).
The binary expansion of e is partitioned as follows:
First the compression tree is initialized with a root named as node 1,
which contains the window value z! = z. Then the binary expansion
(e)2 is scanned from right to left and new windows are created as
described above. New windows always start with a 1, hence tailing
zeros are skipped. The windows end when a leaf in the compression
tree is found. The next digit scanned closes the window and creates
a new node in the tree. The following lines show the partitioning of
the binary expansion of e until the 5th window is found:

(11010001101010101010101101
(11010001101010101010101101
(11010001101010101010101101)

= (11010001101010101010101101)
(11010001101010101010101101) window W3
( 01)
( 01)

()2 = )
)  window W)
window W;

window Wy

110100011010101010101011
110100011010101010101011

window Wy

window W5

The sixth window is shown in red. The digit sequence of that window
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W (the first window is Wy) determines the highlighted path in the
compression tree depicted in figure 1.5. After the first three digits
101 are read, the next digit determines a node not yet in the tree,
therefore the window is closed and the requested new leaf is created.
The new value is computed as 72 g Ws, Therefore, the values z2, 7%

and 72 also need to be precomputed.

,V
A
[1101 0

Figure 1.5: The partially constructed Yacobi-compression
tree at the time the window 1101 is to be inserted

—

01

The complete partitioning is

(e)y = (11010001101010101010101101)

and figure 1.5 already shows the complete tree, because the last
window Wg is due to the end of the binary expansion the same as
Ws. The exponentiation problem is solved as

x54,962,861 — (((((( .'I)WG )27 . .’EW5 )24 . .CCW4 )24 . .'IIW3 )22 . .’I)WZ )23

W1 )22 Wo

X - T

(2) Consider the standard example II = (z € H, 219). The binary
expansion of 219 is partitioned according to the Lempel-Ziv com-
pression algorithm and the tree depicted in figure 1.6 results. The
tree nodes are named after the corresponding window pattern and
their value is zPatter:

Figure 1.6: The Yacobi-compression tree for e = 219
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(219%o= ( 1 1 0 1 1 0 1 1 )
9y = ( 11 0 11 01 1 )
= ( Wz Wy 1241 Wo )
2219 — ((( W3 )23 e )22 . )2 . gWo
- () ) @ P

2((24+43)-4+41)241 _ 2(10841)-241 _ 219

x(219) = (0,0),(1,0), (2,2),(3,3),(4,4),(5,2),(6,6),(7,7),
(8,0),(9,9), (10,0))

S(x(219)) = {1,2,3, 6,12,24,27,54,108,109, 218,219}
L(x(219)) = 11

The highlighted values, which are the same as the values before
the gap in x(219), have been precomputed. The optimal value of
L(x(219)) = 10 could not be reached, the data compression ap-
proach is therefore not optimal.

The data compression approach of Yacobi creates balanced compression
trees on average, as the Lempel-Ziv algorithm does, in spite of example
1.21(1), which seems to suggest otherwise. The approach is most successful
for compressible exponents, where the gain compared to the m-ary method
is the compression ratio on average. Asymptotically though, the m-ary
method is superior, especially for random exponents (which are assumed
within this thesis). Therefore, this method is not examined in detail in the
following chapters.

The expected number of arithmetical operations for a random exponent
eE€Nis

3 Xale) Aol
/\2(6)+5.m-(1+0(1))+0(m>’

according to [GN0O], table 4.1.

1.2.9 The data compression method by Bocharova and
Kudryashov

The data compression approach of Yacobi, who uses the Lempel-Ziv com-
pression algorithm in exponentiation, motivates the search for other data
compression techniques, which could prove useful in the field of exponenti-
ation. In [BK95], I. E. Bocharova and B.D. Kudryashov suggest the use of
typical sets and VF-codes for this task, [KY98] extend the idea to addition-
subtraction chains. Comparisons of experiments can be found in [GNOO].
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idea: The basic idea to this approach is the use of a proper subset D of the
set 2 of all possible window values. If the input’s binary expansion
was partitioned into windows of equal length d, the set 2 would be
the set {0,1,...,2¢ —1}.

In the precomputation step, the values z* are precomputed and stored
for all elements k£ € D. They can be used in the main exponentiation
step, where the precomputed values can be accessed through table
look-up whenever a window W; appears, whose value is in D. If the
window’s value is not in D, the needed value X" is computed using
the binary method. If long frequent substrings are in the set D, the
number of multiplications in the main exponentiation step can be
reduced.

k

Obviously, the choice of D determines the performance of this ap-
proach.

The first idea to find a good choice for D is the use of typical sets (see
[BK95], where [CT91] is recommended for further reading). A typical
set D is a subset of the set ) of elements which are assigned proba-
bilities according to a probability distribution F(z € ) with the
property that for a fixed window size of d digits (m-ary partitioning)
the following equations hold:

|D| = 2d-(#(p)+o(d))
> Prob(k) = 1-¢(d)
keD
where

e(d),0(d) — 0 if d — 0,

and H(p) := —plogs p— (1 — p) logy(1 — p) is the binary entropy func-
tion for a probability p, according to which the input sequence is inde-
pendent identically distributed with Prob(e; = 1) = p. If the source
probability distribution is known, this approach is better than Ya-
cobi’s approach using the Lempel-Ziv algorithm and it is better than
the m-ary method for entropy less than 1. Although, this advantage
takes effect only for very large values of A9(e) for an exponentiation
problem IT = (z, ), it is therefore not recommended by the authors.

The improved idea is to construct a proper set D using the variable-
to-fixed length code, the optimal Tunstall VF-code. The algorithm
is described in [JS72], where the original algorithm is contributed to
[Tun68]. A detailed discussion of this technique for exponentiation
can be found in [KY98]. The name does not imply that the windows
have a fixed length, the naming originates from the use of this algo-
rithm in data compression, where all words of D are assigned code
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words of a fixed length. The improved idea also makes use of an idea
used in the constant length nonzero sliding window method (see sec-
tion 1.2.3): as zeros only account for squarings, a new window is only
started at the digit 1, zeros are skipped.

The set D is created in the following way:

For a given size K, a set of K words is constructed using the following
algorithm 1.22. The probability p of the digit 1 can either be assumed
to be %, as this is the probability that any single digit in the binary
expansion of the exponent e is 1, or it can adapt to the actual input by
counting the number of ones and deriving the actual distribution for
each input (see example 1.23(2)). Note that the notation w0 denotes
the concatenation of w with 0. Lines 9-11 are not part of the original
Tunstall algorithm.

Algorithm 1.22 (optimal binary Tunstall VF-code)
(following F. Jelinek and K.S. Schneider in [JS72], Algorithm 1)
Input: the requested size K of the output set, the probability p of
the digit 1
Output: a set D of K words
00 Set D :={0, 1}
01 Setpy:=p # probability of word 1
02 Setpg:=1-p # probability of word 0
03 while #D < K do
04 Choose w € D with maximal probability p,,
05 Set D := D\{w} # remove word to be extended
06 Set D := D U {w0,w1} # add new words
07 Set pwo := (1L —p) - pw # set probabilities of new words
08 Set pw1 =P - pw

09 forallw € D do # adapt to exponentiation problem
10 Set w := 1w

11 Remove tailing zeros from w

12 return D

After the precomputation is done, the input sequence is partitioned
according to the possible words. The Tunstall algorithm ensures that
before line 9 is reached the set D is complete, e.g. every sufficiently
long input string has a prefix that is a word in D, and proper, e.g. no
element of D is the prefix of another element of D.

The algorithms described in [BK95], [JS72] and [KY98] all parse the
input’s binary expansion from left to right, although it can also be
done vice versa. In this sense, lines 9-11 of algorithm 1.22 ensure that
new windows always start with the digit 1 and tailing zeros on words
are also omitted, reducing the length of the addition sequence that
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computes all ¥ for k € D. After adding a 1 as the leading digit,
all windows must start with a 1, but the set D may not be complete
and proper anymore. However, the partitioning is still unambiguously
possible, if the longest possible match must be applied.

As runs of zeros between windows are skipped, the input is partitioned
as

(e = (wo0™ w107 ... w),ee)—108E"1),

where Ap(e) denotes the number of nonzero windows created by this
approach.

To perform the precomputations of z* efficiently, the construction of
the set D can also be interpreted as the creation of a tree, where
the extension step equals the creation of new children for a leaf (as
described in [KY98]). The precomputation follows that tree structure.
The main exponentiation step is equivalent to the Yacobi method,
with accumulative squarings and multiplications with precomputed
window values.

The variable K is an optimization parameter, the performance of
the exponentiation algorithm depends on a good choice for K. An
analytical solution is difficult and seems not to be present in literature.
[KY98] suggest exhaustive search to find the right value for K. In the
case where p = %, which is the probability assumed for random inputs
and which will be the behaviour the input sequence will show for large
values of A\y(e), the authors state that for ”almost all” values of A\a(e),
the algorithm is optimized when K = 2¢~! for some i € N. Examples
are K = 16 for Ay(e) = 512, K = 32 for Az(e) = 1024 etc. In these
cases, all words in D have the same length.

More thoughts about optimization concerns can be found in [K'Y98].
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Example 1.23:

(1) Consider the example IT = (z € H, 219) and the choice K = 2.
Recall the binary expansion of e = 219 to be

219)= (1 1 0 1 1 0 1 1)

The Tunstall algorithm 1.22 initializes the set D as D = {0,1} and
as these are already two elements, no extension steps are necessary.
In the adaption step, as a leading 1 is added and tailing zeros are
omitted, D is transformed into D = {1,11} which leads to the pre-
computation of the values (22, z3). Although 22 does not correspond
to a word in D, it has to be computed in order to compute z3. (219),
is then partitioned according to D in the following manner:

@9)p= ( 11 0 11 0 11 )
= ( W %4} Wy )

29 = (( [ [y oW
= (2P ) 2B ). g = 2783 219
x(219) = (0,0),(1,0),  (2,2),(3,3),(4,4),(5,2), (6,6),(7,7),
(8,8),(9,2))

S(x(219)) = {1,2,3, 6,12,24,27,54,108,216, 219}
L(x(219)) = 10

With L(x(219)) = 10, this algorithm is one of the few algorithms
that compute an optimal addition chain for e = 219. However, this
algorithm is not optimal in general.

(2) Now consider the Tunstall algorithm once again being applied to
the exponentiation problem II = (z € H,219) and assume K = 3.
If the distribution of the digits is derived from the input sequence
by counting the digit occurrences, the set D is initialized with {0,1}
and the probabilities po = 1,p1 = 2. Thus the third value is created
as the extension of 1, D = {0,10,11}, which leads to the adapted
output D = {1,11,111}, requiring the four precomputation steps of
(x2, 2%, 2%, 27), with 22 and z* being intermediate values (appendix
A shows that this corresponds to an optimal addition chain for 7).
219 is partitioned as follows:

219 = ( 11 0 11 0 11 )

x(219) = ((0,0),(1,0),(1,1),(3,2),  (2,2),(5,5),(6,6),(7,2),
(8,8),(9,9), (10,10), (11,2))
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S(x(219)) = {1,2,3,4,7,  6,12,24,27,54,108,216,219}
L(x(219)) = 12

because the main exponentiation step is the same as in example 1.
Note that the numbers 2,3,4 and 7 belong to the precomputation
step.

If the initial distribution is assumed to be the expected distribution,
hence p; = py = %, the digit 0 could be chosen for extension, result-
ing in D = {00, 01,1}, which gives the output D = {1,101,11}. The
binary expansion of 219 would be partitioned in the same way, but
the precomputation would be (22, 23, £5). This creates the following
addition chain of length 11:

x(219) = ((0,0),(1,0),(2,1), (2,2),(4,4),(5,5),(6,2),(7,7),
(8,8),(9,9),(10,2))
S(x(219)) = {1,2,3,5, 6,12,24,27,54,108,216,219}

This shows that the choice of K and that of the initial distribution
is crucial to the performance of this algorithm.

The authors state that the VF-code is better than the m-ary method if the
digits of the binary input sequence are independent identically distributed
with Prob(X; = 1) = % and it uses less memory. Experimental results from
[GNOO] show this for the number of multiplications for input sequences with
Ao(e) € {512,1024}, but the number of squarings is slightly higher than that
of the m-ary method. Although this method seems to be faster than the m-
ary method for large A\a(e), the following chapters will not closely examine
this method, because of the greater popularity of the m-ary method and
the fact that this method is build upon the m-ary method, which should
be examined first. [KY98] state that this method is more efficient than the
m~ary method and the constant length nonzero sliding window method for
the finite case as well as for the asymptotic case.

Analyses in [GN0O], table 4.1, show that the method requires a total of

a(e) A2(e)
(logy Aa(e))?  logy Xa(e)

Az(e) + (14 0(1))

arithmetical operations on average.

1.2.10 Other approaches

There are also other approaches, which cover special fields of applications.
One of the most important approach is the use of normal bases. In some
groups, e.g. [Fp» for a prime p, normal basis representation can be chosen,
which allows to compute the Frobenius automorphism for virtually no costs,
because it can be achieved through a cyclic shift of the coordinates. In the
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most common case of Fan , squarings become irrelevant. An example for an
algorithm in this situation can be found in [Gat91b].
The following definition introduces normal bases:

Definition 1.24 (normal basis)

(from M.Nocker in [N6cO01], Def. 6.1)

A basis of Fgn as a vector space of T, of the form N = (a,...,oﬂn_l)
consisting of the conjugates of a suitable element o € Fyn with respect to I,
is called a normal basis of Fyn over F;. The element o is then called normal
(or free) in Fyn over Fy.

Theorem 1.25 (normal basis theorem)
(from M.Nocker in [N6c01], The. 6.2)
There exists a normal basis of Fyn over I, .

Proof:

The proof is not presented as it would extend the scope of this thesis.
M. Nocker suggests different proofs presented in [Hen88] and [Jun93].
O

For those groups, where a normal basis representation is possible, squarings
or some exponentiation steps are free, thus reducing the amount of arith-
metical operations significantly. As this thesis tries not to concentrate on
special groups, this approach is not analyzed in detail.

There are also approaches to use the concept of addition chains in par-
allelization of exponentiation. See [N6c01] for detailed readings on that
matter.

1.2.11 Summary

As this overview of the most important algorithms for ordinary addition
chains shows, there are many approaches to find fast exponentiation algo-
rithms motivated by very different mathematical concepts. The concept
being most interesting is the general windowing technique. This approach
uses an arbitrary digit representation of the exponent, and all the practical
useful methods as the binary, the m-ary and the sliding window methods are
clearly members of that family. But even more sophisticated methods as the
continued fractions method, the BGMW-method and the data compression
methods basically use some form of windowing or base representation. This
interpretation is natural for most algorithms, like for the BGMW-method
(as stated by the inventors themselves in [BGMW92]) or the data compres-
sion method (where every tree knot represents a window). But also methods
like the continued fractions approach can be interpreted in this way (for this
example by using the continued fractions vector u = [u1,ug,...,u;] as a
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basis for the representation of e, which can be uniquely defined using the
Euclidean Algorithm, because it outputs uniquely defined values).
All windowing method algorithms follow the steps of a general algorithm:

Algorithm 1.26 (general addition chain algorithm)

01 partitioning of the input into windows
02 precomputation of window values
03 exponentiation with window values present

For some algorithms, not all steps are explicitly performed, for example
the binary method doesn’t require the partitioning of the binary expansion
into 1-digit windows and it doesn’t have to precompute the possible window
values 1 and z.

The other methods are not applicable in cryptographic applications, they
either use too much memory (like the powertree) or too much time (like the
prime factorization of the factor method would do).

For these reasons, it is most reasonable to take a closer look into the general
windowing methods, especially into the basic method, the binary method,
and its direct generalization, the m-ary method. This will be the task of the
next chapter.
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Chapter 2

Cost analysis of the basic
windowing algorithms for
addition chains

This chapter will take a closer look on the two most popular addition chain
methods, the binary method and the m-ary method. Both methods will be
analyzed in detail to provide results that can be compared to those of the
corresponding addition-subtraction chains developed during the remaining
chapters of this thesis. To give a framework for comparisons, cost measures
are introduced and motivated first.

2.1 Definitions

Most cost analyses for addition chain algorithms found in the literature only
regard the total number of arithmetical operations. This makes sense if the
length of the resulting addition chains is of interest.

But although the sole fact that an algorithm needs fewer operations than
some other algorithms might suggest its superiority over the other algo-
rithms, the fields of applications differ, and so do the individual costs of the
different operations. In practical applications, the mere length of an addi-
tion chain is not the only cost factor. It is also important to know what the
corresponding operation for the doubling and the addition are in the semi-
group H of a given exponentiation problem II = (x € H,e € N) and how
fast they can be computed. It has already been pointed out in section 1.1.1,
that there are cases, where the real costs of the corresponding operations
may differ. This has led to the conclusion that doublings may not generally
be replaced by additions.

Because of this fact, it is important to pay respect to the different kinds of
operations involved within an algorithm and to differentiate between them
when stating results about the costs. The algorithms within this section
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will give individual results and in order to do so, some definitions and agree-
ments about the notation are helpful. First, counters for the numbers of
arithmetical operations ”addition” and ”g-step” are defined. In definition
3.2, a cost measure for ”inversion” will be added.

Definition 2.1 (number of additions A)

The number of addition steps that create an element by adding two different
prior computed elements (as opposed to a doubling step, which adds the same
prior computed element to itself), in an addition chains x(e) for a number
e € N will be denoted as A,(). This number is equal to the number of
multiplications used to solve an exponentiation problem Il = (x € H,e € N),
that presents the task to raise x to its e—th power x° using this addition
chain x(e).

If a whole algorithm is to be analyzed, the total number of additions is de-
noted as A.

In order to allow a general representation of the used concepts and to prevent
the creation of many notations denoting the same concept, the notation
for counting doublings will be defined following the notation motivated by
g-addition chains (see definition 1.11) as defined in [NG6c01]. It allows to
include the counting of general ¢-steps, where a base is raised to some ¢-th
power. This concept is most effective if general bases are used to represent
the exponent e, as it is done by the m-ary method and, to some extend, by
windowing methods in general. This definition doesn’t effect the definition
of A,(e), because the problem of adding is the same for any base.
Definition 2.2 (number of g-steps Q(q))

The number of g-steps in a g-addition chain x(e, q) for a given number e € N
is denoted by Qy(e)(q)-

In ordinary addition chains, which will be the sole subject of this thesis,
only 2-steps (or doublings) appear. For this reason, Qy(e) may be used as
an abbreviation for Qy(e)(2).

Qx(e) (q) also denotes the number of exponentiations with q in the computa-
tion of a given power of a given base in the case of using the addition chain
x(e) to perform the task.

If a whole algorithm is to be analyzed, the total number of q-steps is denoted
as Q(q). The notation can (and will) also be used to denote the total number
of exponentiations with the power q within an algorithm.

It may seem a little bit confusing first to use the g-addition chain notation
to denote arbitrary exponentiations, if only ordinary addition chains with
g = 2 are used. But this concept has many advantages. On the one hand, it
eliminates the need to create a new notation denoting known concepts, on
the other hand, some algorithms use arbitrary exponentiation. These cases,
where y? must be computed, correspond to some subsequence within the
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addition chains, which has to perform that task using a known addition chain
algorithm to solve the exponentiation problem II' = (y,q), which appears
as a subproblem in the computation of IT = (z,e). If these exponentiations
can be counted separately first, it allows to generalize the methods in special
applications, where the computation of a g-th power may be done faster than
using only multiplications and squarings, for example by forming an explicit
formula or using special properties of ¢ in a hardware implementation. As
this concept is a highly specialized case, it will not be examined in detail
within this thesis.
Example:
Recall example 1.13, where the exponentiation problem II = (z,219) has
been solved using the m-ary method for m = 4. As the base of the
expansion is 4, the digits are concatenated using exponentiations with 4,
hence creating the need to solve the exponentiation problem IT' = (z,4),
which is very easily and best solved using two consecutive squarings,

$219 — ((($3)4 . $)4 N $2)4 . x?,

The number of arithmetical operations for this algorithm and this exam-
ple are therefore (not including the needed precomputations !)

A = 3
Q) = 3 = QR =Q=6

Together with the one addition and one squaring to form the precompu-
tation, the total costs of this example add up to A + Q = A + Q(2) =
4 + 7 = 11 operations, as example 1.13 states, too.

The example also shows two things: On the one hand, it can be seen that
some algorithms mix different kinds of ¢g-steps. The m-ary method as per-
formed in the above example needs one doubling (2-step) to precompute
z? and 3 4-steps to form other values. As other authors may find fast im-
plementations for different values of ¢, which may not scale linearly, the
differentiation of these operations is reasonable. On the other hand, every
method using windows will face the need to rise an intermediate value to
a power equal to the window size. Hence, the algorithms examined within
this thesis will all face the appearing of g-steps.

Now that the operational costs can be determined and results about the
number of arithmetical operations can be stated, weight functions for the
real (computational) costs must be established.

The set of commands, that a computer has to execute in order to com-
pute the result of an arithmetical operation, may be quite different for the
two arithmetical operations ”addition” and ”¢-step”. Section 1.1.1 already
showed that the doubling of a point on an elliptic curve is a different task
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involving different operations and therefore different costs than a normal
addition of two different points. In the following example 2.4, more cases
will be shown, where the costs of the squaring and of the multiplication
differ substantially.

To take this fact into account, the individual costs of the operations can be
included in the analyses as weight functions. The exact cost can then be
inserted for special applications. These costs may then be arithmetical costs
or hardware restrictions.

Definition 2.3 (operation dependent cost measures)

Let ¢(Q(q)) denote the cost of a g-step with c¢(Q) being used synonymously
for ¢(Q(2)) and let ¢(A) denote the cost of an addition step.

These measures may indicate the costs in the underlying semigroup of an
addition chain as well as the costs in the underlying semigroup of exponen-
tiation operations. They can be used to get exact results about the costs of
the addition chain methods for chosen exponentiation problems.

Let ¢(I) denote the cost of an inversion.

For an addition chain x(ep,e1,...,ex), let

C(X(GOa ceey ek)) = Z (C(Q(q)) ' Qx(eo,...,ek) (Q)) + C(A) ' Ax(eo,...,ek)

q>2
denote the costs of the addition chain.

With these measures and weight functions defined, some practical examples
can be examined. The measure I corresponding to ¢(I) will be introduced
in definition 3.2, but in order to get the following examples complete, the
costs of this operation are already listed.

Example 2.4:
Consider an exponentiation problem IT = (z € H,e € N). The following
cases are practical examples for choices of H and give an overview over
the costs for the operations in the semigroup H:

(1) Consider an implementation of the RSA cryptosystem (see [Sti95]
4.3), that uses exponentiation of arbitrary integers z modulo a huge
integer N (of 512 or more binary digits). The semigroup H for this
exponentiation problem is

H=17y=17/NZ.

In this semigroup, the problem to square a value x has the same cost
as to multiply two values z -y, if no special representation of the
integers x,y is chosen. To compute the inverse of an element z mod-
ulo N, provided that it exists, the Extended Euclidean Algorithm
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reveals costs of O(M - log(A2(N))), where M denotes the cost of a
multiplication (see [GGY99], §11.1). Hence it is

As a second example, consider an elliptic curve cryptosystem as de-
picted in protocol 5 on page 8. Here, the problem arises to compute
sums of points P and () on an elliptic curve and to compute multiples
2-P. The costs for these two operations depend heavily on the chosen
representation of the elliptic curve. Assume the points P and ) be
given in affine coordinates and Optimized Extension Fields (OEF)
be used for finite field representation as the field underlying the el-
liptic curve (see [Sma00] for more details). Then according to N.P.
Smart, running times measured on his computational environment
took 47us for an affine addition and 59us for an affine doubling. As
these numbers represent the ratio between the two basic operations
and as the inversion on an elliptic curve is free (see the presentation
of elliptic curve arithmetic in the motivation), it is possible to use
those as weight functions and hence

c(A) = 47
c(Q2) = 59
cI) =0

and additions are faster than doublings.

Similarly to example (2), the same paper of N. P. Smart suggests the
use of an elliptic curve cryptosystem using Generalized Mersenne
Primes p of the form p = f(2¥) (see [Sma00]) to form prime fields F,
as underlying fields for the elliptic curves (as it is recommended in
standards from such bodies as ANSI, NIST, SECG and WAP). Sup-
pose the elliptic curve points P and () to be in mixed coordinates.
Then time measures of N.P. Smart show that a mixed addition re-
quires 100us and a mixed doubling requires 60us, while inversions
on elliptic curves are free again. With these results, it is

c(A) = 100
c(Q2) = 60
cI) =0

and this time doublings are faster than additions

As a last example, assume a finite fields Fon to be given and the ele-
ments being represented in normal basis representation. In this case,
the Frobenius automorphism can be computed without costs, because
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it can be implemented by a cyclic shift of the coordinates. In cases
like these, squaring (e.g. application of the Frobenius automorphism
in the prime field ) is free, hence addition chains solving an expo-
nentiation problem in this field H = Fo» may assume ¢(Q(2)) = 0.
In [N6c01] (table 6.3), M. Nocker shows the arithmetic costs for mul-
tiplications to be c(4) < 2n® and according to the results stated
in result 6.18 of [N6c01], division in Fy» can be computed with costs
c(I) < (4n%—2n)-((logy(n—1)+logy(g—1))-(1+0(1))+3) operations
in IFy. It is therefore in [Fon

c(4) < 2n3
(@) = 0
eI) < (4n® —2n) - (logy(n— 1) (1 +o(1)) +3)

and multiplication is more expensive than inversions while squarings
are free.

The above example shows that costs can be quite different. This may lead to
different results about the superiority of one algorithm of the other. In such
cases, the total costs of an algorithm can be improved by paying respect to
the individual costs by choosing an exponentiation strategy, that yields the
cheap operation over the other.

For this reason, the following analyses pay respect to the kind of operations
needed and give individual results for the different arithmetical operations.
The results will be given as exactly as possible and — for practical concerns
— for the worst case and for the average case. To prevent misinterpreta-
tions, the analyses will use the following definition to state results about the
average case:

Remark 2.5 (average case analysis)

When examining the average case, unless explicitly noted, it will always be
assumed that all inputs are i.i.d. (independent identically distributed, within
the whole thesis: distributed with the uniform probability distribution) in the
set Qp, :={ e € N | X\a(e) = n}, which is the set of all integers whose binary
expansion requires exactly n digits.

Especially for the binary expansion, the probability for a 1 occurring at any
position but the leftmost will be assumed to be %

2.2 The binary method

After the naive method for the computation of an addition chain for a given
number e € N, which just creates {1,2,3,...,e}, the binary method, also
known as repeated squaring, is the oldest known method for the computation
of a power z¢ and therefore also for creating an addition chain for e.
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This method was known to the ancient Indian mathematicians around 200
BC (see [Knu97] or [Dat35]) and to the classical Arabic mathematicians
at least since the 10th century AD (see [Sai75]). In addition to that, the
ancient Egyptians used a multiplication scheme quite similar to the binary
method with a right to left direction of computation as early as 2000 BC
(see [Str30]).

In the modern world, the binary method was a long time considered to
create optimal results for addition chain lengths (see [Knu97], p. 463), which
is indeed not true, even for a number as low as 15 (see example on page 23).
The binary method uses the binary expansion of a given integer e and creates
an addition chain by squaring for every digit and multiplying with the base
for every one in the binary expansion.

Algorithm 2.6 (exponentiation, binary method, left to right)

Input: z,(e)s = (e)\z(e)—la Ca(e)—27 - - ,€0), e £ 0
Output: =z°

01 Set A:=x # the most significant bit is assumed to be # 0
02 for i from A(e) — 2 downto 0 do

03 Set A := A?

04 if & # 0 then A:=A-x

05 return A

2.2.1 Cost analysis

It is easily observed that only the number of digits determine the number
of squarings, not the value of the digits themselves. Therefore, the binary
method always requires A2(e) — 1 many squarings. This is the same in the
worst case as in the average case.

The number of multiplications however is only dependent on the Hamming
weight of the exponent e, as for every 1 in the binary expansion (besides the
leading one), one multiplication with the base z is necessary. This leads to
a consumption of v5(e) — 1 multiplication steps. As in the addition chain
constructed by algorithm 2.6, only doublings of the highest value and star
steps occur, no doublings can be mistaken as multiplications (see lemma
1.5).

It is clear that v,(e) has the upper bound As(e), hence in the worst case
A2(e) — 1 multiplications occur. In the average case it has to be determined
how many digits can be expected to be 1. Because every digit is 1 with
probability % and the leading digit is 1 by default (unless e = 0), the expected
value of the Hamming weight for a random binary expansion is % - (A2(e) —
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1) 4+ 1, which is one more than the expected number of multiplications on
average. Altogether, this gives the costs depicted in table 2.2.

Q(e) Afe)
exact costs Ao(e) =1 wo(e) —1
worst case Ao(e) —1  Age) —1

average case Me) —1 1.(Xy(e)—1)

Table 2.2: Costs of the binary method

In the average case, the number of squarings is twice as high as the number
of multiplications. If squarings could be made faster, this would mean an
important improvement to the speed of the algorithm. Another chance to
improvement is to reduce the number of multiplications.

2.2.2 Changing the direction of computation

The algorithm 2.6 scans the bits of the binary expansion of e from left to
right. There is also a version that scans (e)2 from right to left. This version is
described in [Knu97], §4.6.3, and adapts to the direction modern computers
handle bit strings usually. However, this second version uses one additional
multiplication and it also needs more memory than the left to right method.
Although this tends not to matter anymore, because it is little compared to
what standard computers offer today, the presented algorithm 2.6 should be
used, if the least amount of operations is searched for.

2.3 The m-ary method and the Brauer method

The m-ary method (see [Knu97],84.6.3), is a generalization of the binary
method from the last section. The new method can handle any m-adic ex-
pansion to any base m € Ns;. The algorithm presented here assumes this
representation of the exponent e to be given. With this assumption, the
algorithm differs only slightly from the binary method algorithm 2.6, but it
introduces the important step of precomputation. This becomes necessary,
because the values of the digits are not known in advance anymore. The
basic idea of improvement is that precomputation steps can save multipli-
cations in the exponentiation step:
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Algorithm 2.7 (exponentiation, m-ary method, left to right)
Input: J),(e)m = (E)\m(e)fh E)\m(e)an s 7E0)’ e#0
Output: =z°

01 Precompute x%,x!,... x™1.

02 Set A := xErm@1

03 for i from Am(e) — 2 downto 0 do
04 Set A:= A"

05 if E; # 0 then A := A - xEi

06 return A

The analysis of this algorithm will be presented in the next sections.

2.3.1 Cost analysis of the precomputation step

The m-adic expansion is usually much shorter than the binary expansion,
it has less digits and therefore lower costs in the main loop. The trade off
for this advantage is the need to precompute the values of the digits which
are needed for the multiplication in line 5. These costs have to be added
to the costs of the main loop in order to determine the total costs of this
algorithm and they may vary depending on the implementation. As there
are two different operations (multiplications and squarings), there are two
possible addition chains maximizing each of the operations.

One possibility to get all digits is to successively multiply z with itself,
creating the addition chain

x(1,2,...,m—1) = ((0,0),(1,0),(2,0),...,(m—2,0)). (2.1)

This choice of x requires only one doubling ((0,0) for z -z = z?) and m — 3
additions. As only star steps occur after the initial doubling, no hidden dou-
bling may show up, hence, the number of additions is correct (see lemma
1.5). This addition chain needs the minimum number of operations, if all
m digits have to be precomputed (0 and 1 do not require an operation).
The following algorithm implements the precomputation using the above
addition chain. Let v = (v, v1,...,vm—1) be the vector in which the values
v; = z' for 0 < i < m are being stored (v corresponds to the semantics of

x(1,2,...,m—1)):

Algorithm 2.8 (Precomputation with maximum multiplications)

01 Setvg:=1

02 Set vy :=x

03 for i from 2 to m-1 do
04 Vi :=Vj_1-X
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However, if the cost for a squaring is lower than the cost of a multiplication,
an addition chain preferring doublings would be more feasible and such
a chain is of course also possible. The following addition chain for the
precomputation step computes all even multiples of 1 using doublings. It is

X(1’27 cee, M= 1) = ((](1)’k(1))’ (.7(2)714:(2))’ R (](m - 1)7k(m - 1)))
with (2.2)

(50, k(@) = {

(1—1,0) if iis even
(54, 5) if iis odd

This addition chain needs mT_2 doublings and mT_2 additions if m is even,
and |2 |+1 = [-2] doublings and | ;2| additions if m is odd, therefore
there are always ["52] doublings and |”52| additions necessary. Again,
the total number of operations, m — 2, is minimal. Note that no hidden
doubling may occur as the needed values are created one after the other in
a strictly monotonous way.

The following algorithm implements the precomputation step using the

above addition chain (let v be explained as above):

Algorithm 2.9 (Precomputation with maximum squarings)

01 Setvg:=1
02 Set vy :=x
03 forifrom 2 to m-1 do
04 if (i mod 2 ==0)
05 then v; := (v%)2

06 else v; := vi_1 - x

Theoretically, it may be helpful to observe that only those digits have to
be precomputed, which really appear in the m-adic expansion of e. But
in practice, if long representations of e with some hundred digits occur, the
chance of saving operation in the precomputation diminishes rapidly, making
such efforts to save time needless. It may only be applicable where possible
inputs of e follow certain patterns. But then, precomputation may be made
in advance for all following exponentiations.

Because the costs for squarings and multiplications depend on the underlying
group and vary significantly, the number of the different operations should
be adjusted to the algorithm that provides best costs. Hence, these numbers
of operations should be introduced into the cost analysis as functions:

Definition 2.10 (costs of precomputation addition chain ~v(m))
In the precomputation step, all values within 1,...,m — 1 for some m € N
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must be computed in one addition chain. The window values z* for 1 < k <
m are then computed according to that addition chain.
Let

'(m) = {x(1,2,....,m—1)}

denote the set of all possible addition chains x, that compute all values needed
in the precomputation step. Elements from T'(m) will usually be denoted as
y(m).

Analogously to definitions 2.1 and 2.2, let Ay denote the number of ad-
ditions and Qvy(m)(q) denote the number of g-steps in an addition chain
v(m) € T'(m).

Analogously to definition 2.3, let

c(y(m)) = c(Q(q) - Qyim) () + c(4) - Ay(m)
denote the costs of the addition chain y(m) € T'(m).

The results are combined in the following lemma. As the precomputation
doesn’t depend on the input, the stated results apply for all, the exact
analysis, the worst case and the average case, if m is fixed.

Lemma 2.11 (costs of the precomputation of the m-ary method)

The precomputation of the m-ary method for a given base m € N requires
the following operations, e.g. there exist two addition chains vy1(m),y2(m) €
['(m), such that:

choosing minimal squarings: Q) (2) = 1
Ayym)y = m—3

choosing maximal squarings: Q.,()(2) = [7Z52]
Apm) = 1777

Proof:

The algorithms 2.8 and 2.9 require the stated costs. The corresponding
addition chains have been introduced in the remarks introducing the
two algorithms. With v;(m) defined as the addition chain depicted in
(2.1), and 7,(m) defined as the addition chain depicted in (2.2), the
result is shown. O
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2.3.2 Cost analysis of the exponentiation step

The exponentiation step of the m-ary method depends upon the knowledge
of the precomputed window values z°, z!, ..., 2™ 1. If those are known, the

analysis of the main loop is completely analogous to the binary method.

Lemma 2.12 (costs of the exponentiation of the m-ary method)
The exponentiation step of the m-ary method requires the following costs:

measure exact analysis worst case average case

Q(m) = Am(e) —1 Am(e) —1 Am(e) —1

A= vn(€) =1 Anle)=1 =L (Au(e) - 1)

Proof:

The number of exponentiations with m, which appear in line 4 of
algorithm 2.7 are performed once for every execution of the loop. The
number of runs through the loop doesn’t depend on the configuration
of (e)m, but only on the length. Therefore, there are Ay, (e) — 1 such
exponentiations needed in any case.

The number of multiplications however depends only on the configu-
ration of (e),,. Line 5 of algorithm 2.7 accounts for a multiplication
whenever the current m-adic digit is nonzero. As the leftmost digit,
which is required to be nonzero, is used for initialization of the ac-
cumulator A, and the total number of nonzero digits is given as the
Hamming weight of the m-adic expansion of e, v,,(e) — 1 operations
are necessary. In the worst case, this number can go up to A, (e) — 1,
if no zero digits occur.

Note that by concatenating the precomputation and the main expo-
nentiation, no hidden doublings occur in line 5 of algorithm 2.7. The
reason for this is, that the first window value used for initializing the
accumulator is A = z* with 4 > 1 (because the leftmost digit is as-
sumed to be nonzero) and it is first raised to its m-th power, giving
a value of A = 2/ with j at least m - 1 = m. But this value of the
accumulator is not equal to any window value, which is bound to be
oF with 1 <k <m —1 (assume z ¢ {0,1}). After that multiplication
(if it occurs at all), the power of z represented by the accumulator
A only grows, which prevents the chance that it may ever become a
window value again. Hence, no hidden doublings can be created by
line 5.
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For the average case, every possible window value is equally likely for
any but the leftmost window. As there are m different possible win-
dow values, an expected mT_l - (Am(e) —1) + 1 windows are nonzero on
average, which gives one more than the average number of multiplica-
tions, because the leading window still doesn’t require an operation.

O

2.3.3 Cost analysis of an m-step

Additional costs arise from the need of raising the accumulated partial result
to an m-th power (line 4 in algorithm 2.7). These costs have an upper
bound derived from the binary method for exponentiation with m, giving
costs of Ag(m) — 1 squarings and v(m) — 1 multiplications. But faster
implementations may be possible. In many practical applications, the same
value of m will be used many times. This leaves room to compute a more
efficient direct formula for exponentiation with m, which can reduce the
number of operations compared to the binary method. One obvious way is
to compute the optimal addition chain for m if m is not too large. Because of
this, the cost for this exponentiation with m is also introduced as a function
into the total cost analysis:

Definition and lemma 2.13 (costs of performing an m-step Q(m))

The task of raising an accumulated value to its m-th power is assumed to be
done by an addition chain x(m). If there exist fast implementations of per-
forming this task directly, m-steps may be allowed, thus the addition chain
x could be replaced by an m-addition chain x(m,m), that will just consist
of ((0,—m)) with the semantics S(x(m,m)) ={1,m}.

In the usual case, Qy(m) (q) denotes the number of g-steps to compute an
addition chain for m and A,(,) denotes the number of additions. Again,
Qyx(m) (q) also represents the number of exponentiations with q and Ay (m)
represents the number of multiplications for the computation of ™ for any
x using the addition chain x(m).

If as usual addition chains only allow 2-steps (doublings), the task can be
performed with the following costs:

Qym)(2) = Ao(m) —1

A

xm) = va(m) =1

In the special case where m = 2% for some d € N, this table simplifies to
Qyx(m)(2) = d and A,y = 0, which is optimal for such inputs.
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Proof:

The stated results origin from the application of the binary method as
stated in table 2.2. In the case where m = 2¢, the optimal addition
chain for 2¢ can be used, consisting of d doublings only, with the se-
mantics {1,2,22,23,...,29}. For such values of m, the binary method
is optimal. O

2.3.4 Complete cost analysis of the m-ary method

This leads to the following overview of costs.

Theorem 2.14 (Complete cost analysis, m-ary method)

Let Q(m), Q(2) and A denote the operations needed by the m-ary method
(algorithm 2.7). Let y(m) denote any addition chain from I'(m) to precom-
pute the values (0,1,...,m — 1) and let x(m) denote any addition chain to
perform the exponentiation with m in step 4 of algorithm 2.7. The exponen-
tiation with m can be done with one step, if the addition chain x(m) is an
m-addition chain. The exact result can then be depicted from table 2.6.

Q(m) Q(2) A
exact costs | Ap(e) =1 | Qym)(2) | vm(e) — 1+ Ay

Table 2.6: Exact costs of the m-ary method

This result can be refined, if only squarings and multiplications (doublings
and additions) are allowed. In this case, the m-steps are replaced by squar-
ings and additions according to lemma 2.13. In the same way as the binary
method showed, the number of squarings in the exponentiation step only
depends on the length of the input, while the number of multiplications is
varying depending on the configuration of (€)p,. The refined cost overview
1s depicted in table 2.7.
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the m-ary method cost analysis

exact costs

Q(2) = (Am(€) = 1)+ Qy(m)(2) + Qym)(2)
A= (Am(e) — 1) Ay(m) + Um(e) — 1+ Ay (m)

worst case costs

Q(2) = (Am(€) = 1) - Qy(m)(2) + Qym) (2)
A= (Am(e) = 1) - Aymy + Amle) = 14 Ay
average case costs
Q(2) = (Am(€) = 1) - Qy(m)(2) + Qym)(2)
A= (Am(e) = 1) Aymy + 221 (Amle) — 1) 4+ Ay

Table 2.7: Costs of the m-ary method

Proof:

In table 2.6, the result of lemma 2.12 is combined with the general
statement about the precomputation step (definition 2.10), while ta-
ble 2.7 combines the results of lemma 2.12 with the general statements
about the precomputation step (definition 2.10) and the exponentia-
tion with m (definition 2.13).

It has still to be shown that by concatenating the three addition chains
(for the precomputation, for the m-step and for the exponentiation
step) no hidden doublings are created. To show this, assume that the
m-step addition chain x(m) does not contain a hidden doubling (for
example, use the binary method). Then the assumption that x(e)
contains a hidden doubling contradicts this assumption. It may be
assumed that the precomputation step computes a new window value
with every step, which prevents hidden doublings (this assumption
is justified by the existence of such addition chains shown in section
2.3.1) and it has been shown explicitly for the multiplication in line
5 in lemma 2.12, hence, a possible hidden doubling must origin from
the m-step addition chain y(m) used for raising the accumulator to
its m-th power.

Let (j(7),k(7)) with j(i) # k(i) and aj;) = ag(;) be such a hidden
doubling. It occurs while raising A to its m-th power. This is achieved
by taking the exponent of x represented by A in place of the usual start
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value 1 of x(m) and perform x(m) on it. During the m-step, only that
value of A and values created within the m-step addition chain are
referenced, hence, a hidden doubling corresponds to a hidden doubling
in the original x(m), which doesn’t exist by assumption. Therefore,
no hidden doublings occur. This proof becomes very easy, if m is a
power of 2 and the m-step only consists of squarings.

O

Example:
If m = 2, the m-ary method should give the known results of the binary
method. And this is the exact result when looking at the cost analysis
for m = 2:
In the precomputation for m = 2, only 2° = 1 and z' = z have to be
computed, hence no costs arise, () (2) = Aym) = 0.
The exponentiations with mm = 2 on line 4 of this algorithm are squarings,
so the costs of the squarings, measured in squarings and multiplications,
are quite trivial:

Qy2)(2) =1,Ay) =0.

Therefore the exact total costs are (Aa(e) — 1) - 1 = Ay(e) — 1 squarings
and v5(e) — 1 multiplications, verifying the result of the analysis of the
binary method in the last section.

2.3.5 Brauer’s method — a practical restriction

One problem has not been addressed in the analysis yet, the computation of
the m-adic expansion (e),, of e. In practical applications, these costs may
be significant, because numbers are usually stored in a computer as a 2*-ary
expansion of e, for some k € N,

To adapt to this property, which makes the m-ary method very useful in
practice, the suggestions by A.Brauer in [Bra39] are used. Brauer restricts
the algorithm to bases which are powers of 2, e.g. m = 2% for some d € N.
In the literature, this restriction is often assumed, while still the name ”m-
ary method” is used, the m often changes its meaning from the base of the
m-ary method to the power of 2 of Brauer’s restriction.

This restriction, or Brauer’s method, is also very close to the computer’s
inside reality, because the transformation from the binary expansion into a
2¢_adic expansion can be done free of costs, because simply d consecutive bits
have to be viewed together for a digit representation. Modern computers
do this anyway, in order to gain speed they’re not handling bit after bit but
word after word, each word consisting of many bits (32 or 64 bits is today’s
usual computer word size). In this context, d determines the window size
when looking at the binary expansion of e.

Although, if the given context of the exponentiation problem II offers the
use of the Frobenius automorphism, it may be a great advantage to choose
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a different number representation in order to use that property. In this case,
it is useful to choose a suitable base for the representation and to build up
windows consisting of d of such digits.

In a correct cost analysis, the costs to create this representation could be
included as an additional term in the sum of operations needed. But as this
transformation doesn’t require arithmetical operations, which are the sole
interest of the cost considerations, these costs are omitted.

In the remaining part of the thesis, Brauer’s restriction is applied. This
leads to a simplified cost analysis:

Corollary 2.15 (cost analysis for the Brauer method)

Let v(2%) € T'(2%) denote any addition chain suitable for the precomputation
step. Then for the Brauer restriction, where m = 2% for some d € N, the
costs depicted in table 2.8 can be assumed.

the Brauer method cost analysis

exact costs

Q(2) = ([222] 1) - d+ Qa2
A= voa(e) — 1+ A gay

worst case costs

Q(2) = ([222] 1) - d+ Q0@
A= 222 =1+ 4,0
average costs
Q(2) = ([222] 1) - d+ Q)02
A= 7t (1242] - 1) + 4y

Table 2.8: Costs of the Brauer method

Proof:

The replacement of @, 4y(2) by d and A
lemma 2.13. And it is

x(m) by 0 has been shown in

Aga(€) = PQT(G)W .
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2.3.6 Determining an optimal value for the window size d

Obviously, the number of arithmetical operations needed depends on the
window size d. For large d, the costs in the exponentiation step are low,
while the precomputation requires a lot of operations. If d is small, the
ratio is vice versa. In order to reduce the overall costs of the computation
of an addition chain to the minimum, this value should be chosen carefully
and optimal. The choice has to be done dependent on the bit length Az (e)
of the exponent e.

In the literature, the window length d has always been optimized with re-
spect to the total number of arithmetical operations (squarings plus multi-
plications). Although examples 2.4 showed significant differences in the real
costs of the arithmetical operations, most optimization efforts were spent to
optimize applications computing in some Fy», where Q = A (see example
2.4(1)). It is not the intent of this thesis to extend these results, hence, this
starting point for optimization of d is also carried out.

According to the cost analysis and definition 1.2, the overall number of
arithmetical operations will be denoted by ¢ in the following way:

0 := (Qy(m) + Ay(m)) + Am(e) = 1) - (Quim) + Axm)) + vm(e) — 1

Ordinary addition chains only allow squarings and multiplication, hence the
optimization for d should pay respect to that fact and replace all measures
by those using only squarings and multiplications. Therefore, it is assumed
that the precomputation is implemented by algorithm 2.8, that computes
all digits (besides z2) by successive multiplication with z and it is assumed
that the exponentiation with m is implemented by the binary method, using
the binary method addition chain for m in order to compute z™:

= o0 =m—2+4+ (Ap(e) —1) - (Aa(m) — 14+ 1vo(m) — 1) + vy(e) — 1

If m = 2%, then Aya(e) = [3 - Az(e)], A2(2%) = d+ 1 and 1,(2%) = 1, and
therefore

g=2¢ 3¢ (P?T(e)] —1) -+ va(e).

In the average case, and this should be the case d should be optimized for,

it is vpm(e) = =L - (A (e) — 1) and hence

v (5] 55 (]
2d—d+<2d2;1+d)-<[’\27(ﬂ —1) — 3. (2.3)

This function has a unique global minimum, but it is very difficult to com-
pute an explicit analytical solution. Additionally, in practice, integer solu-
tions are needed, which requires an approximation.

Q
Il
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Az2(e) formula (2.5) rounded (2.5) formula (2.4)
8 1.81261743600 2 0

20 2.36590733400
33 2.70350182800
67  3.22038722400
128 3.73023405800
155  3.88733092400
192 4.06629740400
256  4.31203116400
307 4.47018933800
419  4.74609241800
512 4.92721911400
555  5.00079525600
1024  5.57224763000
1145  5.67875096400
2048  6.24388051400

DO OO I ] B W W N
QY I | W w|w|w|w| NN N R

Table 2.9: Comparison of some suggested optimal values for d

Because of this, a good value for d can be found by exhaustive search or
using heuristics. The most common choice for d is attributed to Brauer
[Bra39] himself and states

d = |logy Aa(e) — 2 -logylogy A2(e)] + 1. (2.4)
A slightly different value has been proposed by Gordon in [Gor98] as
d = logylogye — 2log,ylog, logs €.

However, the above values originate in the aim to prove an upper bound to
l(e), the lowest number of operations in any addition chain for an integer e,
therefore, they do not state the optimal value for d. Although, in practical
applications, it is common to determine d according to either of the above
formulas and also to try the next two integers to either side to ensure optimal
choices.

A new and better approach was suggested by M. Nocker in [N6c01], who
used Lambert’s W function W (z) = w, which is defined as the solution w
of the equation w - exp(w) = z. He shows that the problem of optimizing d
can be reduced to an equation of this type. This leads to the global extrema

for (2.3) as
;2 1 /Xs(e) -In2
d = o w 5 7&2-1 , (2.5)
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A2(e) | di operations | d2 operations dopt
8 1 10.4952 2 10.2479 2

20 1 28.4965 2 26.7452 2
33 1 47.9852 3 44.7517 3
67 1 98.9879 3 91.2488 3
128 2 175.262 4 167.065 4
155 2 213.748 4 201.627 4
192 2 263.254 4 246.065 4
256 3 335.384 4 325.069 4
307 3 401.251 4 389.24 4
419 3 544.623 5 525.409 5
512 3 664.768 5 638.816 5
555 3 718.997 5 686.561 5
1024 4 1273.07 6 1249.35 (5, 1247.62)
1145 4 1426.13 6 1389.03 6
2048 5 2471.23 6 2443.67 6

Table 2.10: Comparison of the numbers of operations for some values of d

where ¢ > 0 is a constant describing the ratio

The rounded value of d', e.g. d = round(d’) can then be used for the Brauer
method with better results than formula (2.4). Table 2.9 shows some values
for d computed with formulas (2.4) and (2.5), table 2.10 shows average re-
sults for the number of arithmetical operations for the two suggested choices
of d. Note that d; is the value computed by formula (2.4), ds is the value
computed by formula (2.5) with the assumption of ¢(A) = ¢(Q) and dp; is
the lowest number of operations for choices of di —1 < d < dy + 1 (where
di —1wasset tolifd; —1<1).

The experimental data has been created using 10° sets of random binary
expansions with the stated length, where the leftmost digit has been set to
1 in order to assure that all inputs have the same length. The hardware was
a 733MHz PC with Intel architecture, the random bits have been generated
with the C++ rand() function as

e; == (int)(2.0 * ((double)rand() /(double)(RAND_MAX + 1))).
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Chapter 3

Addition-subtraction chains

This chapter will introduce addition-subtraction chains and a number rep-
resentation, the non-adjacent form (NAF), which is well suited as a base for
addition-subtraction chain algorithms. The NAF will be analyzed to great
extend, as the analyses of the addition-subtraction variants of the binary
method and the Brauer method, which will be presented in chapter 4, re-
quire extensive knowledge about properties of this special representation.

All algorithms presented so far deal with additions and doublings only, which
lead to multiplications and squarings in the context of exponentiation.
Subtractions, which lead to divisions, always require the explicit computa-
tion of a multiplicative inverse, which is a costly operation in general rings
(e.g. O(n?) bit operations for modular inversion using classical arithmetic,
see [GGY99], p.232 and §11.1). For that reason, subtractions are hardly
usable in a general application of addition-subtraction chains.

One could imagine to introduce subtraction by starting an addition chain
not with the value 1 (for z), but with —1 and 1 (for z—! and z). Then all
inverses could be computed from the element —1 without computing further
inversions. This may help in some cases, where only —1 is needed (algorithm
4.11 is such an example), but this approach leaves out the chances that the
new operation offers. It is only helpful if inversion is an expensive operation
and should not be used often.

However, in some cases, like elliptic curves, the needed inverses can be com-
puted very fast — in fact, when using elliptic curves, theses inverses are
completely free (see definition 2 on page 7 and examples 2.4(2) and (3)). In
cases like these, inversion can lead to improved results: addition chains turn
to addition-subtraction chains.

Definition 3.1 (addition-subtraction chain x(e))
An addition-subtraction chain X is a sequence

X = (G'D), K (D)., (5" (r), K(r))),
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of pairs of possibly overlined non-negative integers (j(i), k(i) with

7'(6) € {40, () },  K'() € { k(), k(3) }
0< k@) <ji)<i VI1<i<r
The number r of pairs is the length L(x) of the addition chain Y.

The semantics of X is defined to be the set S(x) = {ag,a1,...,a,} of integers
such that

apg = 1

a; == aj/(i) + ak,(i) Vi<ir
with

s — —0g

The tupel (j'(i), k' (7)) is said to produce the element a; of the semantics.

In the case where j'(i) # k'(3), the operation is called an addition, in the
case where j'(i) = k'(i), the operation is called a doubling. If j'(i) = j(i)
or k' (i) = k(i), the inverse for the addition is taken for the operation, e.g.
whenever there’s an overlined j(i) or k(i), an inversion has to take place
before the addition or doubling can be carried out. The computation of these
inverses does not contribute to the length of the addition-subtraction chain.
For any set of numbers E = {eg, e1,...,ex} C S(X), X is called an addition-
subtraction chain for E (an addition-subtraction chain for eq,...,ex) and
may be denoted as x(eg,e1,...,ex). Xx(e) denotes an addition-subtraction

chain for a single number e € S(x(e)).

Example:
The following is an addition-subtraction chain for e = 219.

x(219) = ((0,0),(1,1),(2,2),(3,3),(4,4), (5,5), (6,6),(7,7), (8,5),
(9,2), (10,0))
S(x(219)) = {1,2,4,8,16,32,64,128, 256,224, 220, 219}
L(x(219)) = 11

Note that the semantics has been noted in the same order as the elements

are created.
Note that unlike most authors (for example [MO90], [KT92], [Len93] and
[Gor98]), this thesis includes the computation of the inverse in the definition
as an explicit operation, rather than just allowing + and — to be used to
combine two elements, because this is what really has to be done for a
subtraction and it helps to analyze applications where the computation of
inverses may have very different costs. In this, the definition is more general
than the usual notation, although the same semantics is created.
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In order to count the number of arithmetical operations within an addition-
subtraction chain, the following measures are introduced similar to the mea-
sures A and Q(q) in section 2.1.

Definition 3.2 (number of operations)

The number of inversion steps that create an additive inverse to be used for
the creation of a new element within an addition-subtraction chain x(e) for
a number e € N will be denoted as Iy (). This number is equal to the number
of divisions used to solve an exponentiation problem Il = (z € H,e € N),
that presents the task to raise x to its e—th power x¢ using this addition-
subtraction chain x(e).

If a whole algorithm is to be analyzed, the total number of inversions is
denoted as I.

Analogously to the definition of the measures Q(q) and A, let Qx(e)(q) denote
the number of g-steps and let Ag) denote the number of addition steps
within the addition-subtraction chain x(e). Let A and @Q denote the total
number of such operations within a whole algorithm.

Similarly to definition 2.3, the cost measure for an addition-subtraction chain
is defined equivalently to that for addition-chains:

Definition 3.3 (operation dependent cost measure for x(e))

For an addition-subtraction chain x(eg,€1,...,ex), let
c(x(eos---ren)) = Y (cQ(Q)) - Qleoer) (@) + ¢(A) - Ax(ep,.er)
q>2

+ C(I) ) I)Z(E(),...,Ek)

denote the costs of the addition-subtraction chain.

3.1 Chances and limitations of addition-
subtraction chains

While the computation of shortest addition chains is presumably an NP-
complete problem (as explained on page 21), their lengths can be bounded.
While a trivial upper bound can be derived using the result of the analysis
of the binary method (see section 2.2), there is also a lower bound that has
been presented by Arnold Schénhage in [Sch75] (see theorem 1.9). For the
length I(e) of a shortest addition chain for a given positive integer e the
following equation holds:

log, e + logy a(e) —2.13 <l(e) < Aa(e) — 1+ a(e) — 1 (3.1)

The tightness of the lower bound has been depicted in figure 1.1. Especially
for numbers e = 22" — 1, where addition chains of length 2" +n — 1 ~
log,(e) + log,(v2(e)) — 1 exist, improvements are limited (see [Sch75], p. 2).
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There have also been other upper bounds, e.g.

log, e log, e
l <l — —_—
(n) < logye+ log, log, e to (log2 logae )’

taken from [Bra39], but other upper bounds can also be derived from any
of the presented algorithm within this thesis.

The introduction of the subtraction operation now yields the immediate
result, that addition-subtraction chains are capable of reducing the optimal
length. In the sequence (I(e))necn (see table in appendix A), there are entries
e with I(e) > I(e + 1) + 1, see table 3.1 for some examples.

e le)| e Ue)| e Ie)
47 8| 127 10 | 159 10
6 7

128 160 8

Table 3.1: Some examples of I(e) > l(e+ 1) + 1

In any such case, the use of subtraction yields shorter addition-subtraction
chain for e using the chain for e+ 1 and subtracting 1 at the end. Therefore,
for some numbers, the use of an addition-subtraction chain can yield results
which are better than any addition chain.
Example:
Consider e = 255 and an addition chain of optimal length 10 producing
the semantics shown in appendix A,

S(x(255)) = {1,2,3,5,10,15,30,60,120,135,255},
and the following semantics of an addition-subtraction chain of length 8:
S(x(255)) = {1,2,4,8,16,32,64,128,256,255}.

The semantics has been noted in this way to show the last step of the
addition-subtraction chain to be (8,0). As one might guess, the most
impressive examples are of the form e = 2 — 1 for some k € N, because
doubling is the fastest way to increase the numbers, therefore, powers of
2 have the shortest chains possible.

According to Schonhage, the stated lower bound (3.1) also holds for addition-
subtraction chains, if the Hamming weight is replaced by the arithmetic
weight w(e) (the minimal possible Hamming weight for signed binary digit
representations), that will be defined in definition 3.6. The minimal Ham-
ming weight is necessary, because signed binary digit representations are
not unique, hence, by choosing a very long representation, log,(v5(e)) could
exceed every limit.
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For powers of 2, where the binary Hamming weight is equal to the arithmetic
weight, no advantage can be expected using addition-subtraction chains.
But for other numbers, whose binary expansion has more nonzero digits
than a minimal signed binary representation, Schonhage’s lower bound de-
creases, giving hope to find faster algorithms based on signed binary digit
representations. This notion is the basic idea to analyze addition-subtraction
chains using signed binary digit representations of minimal length. The next
sections will present a possible approach.

3.2 Signed binary digit representations

One approach to addition-subtraction chains is the use of so called signed
binary digit representations of the exponent e. This approach has been
introduced and developed among others by Jedwab and Mitchell in [JM89],
Morain and Olivos in [MO90], Koyama and Tsuruoka in [KT92] and Arno
and Wheeler in [AW93]. They transform the ordinary binary representation
of the exponent e into a binary representation with signed digits using the
values -1, 0 and 1.

Using this approach, the authors’ aim is to reduce the Hamming weight — and
by this the overall number of multiplications needed in an exponentiation
algorithm, that uses an addition chain based on this representation. The
general algorithm 1.26 used for exponentiation from chapter 1 now has the
general form

Algorithm 3.4 (general addition-subtraction chain algorithm)

01 representation of the exponent

02 partitioning of the representation into windows
03 precomputation of window values

04 exponentiation with window values present

The representation of the exponent e is most efficient if it minimizes the
operations of the addition-subtraction chain method which is based on that
specific representation. By now, authors have mainly concentrated on the
approach to compute a canonical signed binary digit representation with
the lowest possible Hamming weight, which will be presented in the next
sections.

The motivation to have a closer look into addition-subtraction chains was
the observation that especially long runs of ones can be represented by
one division, hence reducing the Hamming weight significantly, for example
111111 can be transformed into 1000001, using 1 to denote —1. This is most
effective in the case where the binary expansion of e only consists of ones —
the worst case of the traditional binary method.
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At first, some remarks about the notation:

Definition 3.5 (signed digit representation)
A signed digit representation (e)g of a given integer e € Z is a finite se-
quence

(e)g = (ex—1,ex—2,...,€0)

of k digits satisfying

€ e{_(q_1)’_(q_2),"',_1a051a"',q_2aq_1} Vi
with |ex_1| # 0 for e >0 and

k—1
e= Z e q.
1=0

The number k of digits is the length \;(e) of the signed binary digit repre-
sentation.

It is sometimes helpful to interpret (e)q as an infinite sum of digits with all
but finite many being zero. In this case, Ag(e) can be formally defined as

Age) = max{i € Ngle; #0}+1 fore>0
7= for e=0.

For the sake of a better notation, any value for e; = n < 0 will be written
as 0, especially —1 will be denoted as the digit 1.

In generalization to definition 1.8, the Hamming weight for signed digit
representations is similarly defined. Additionally, as signed binary digit rep-
resentations are not unique, the minimal Hamming weight, the arithmetical
weight, is introduced.

Definition 3.6 (Hamming weight and arithmetic weight)

(following A. Schonhage in [Sch75] and J.H. van Lint in [Lin98])

The Hamming weight of a given signed g-ary digit representation (e)g of a
given integer e is defined as the number of nonzero digits in (e)g, e.g.

vile) = Zl.
e 70

The minimal Hamming weight of any possible signed g-ary digit representa-
tion for e is called the arithmetic weight of e and it is denoted and defined
as

wq(e) := min Z 1 e:Zek-qk,—(q—l)SekS(q—l)

ek¢0 k

It can easily be seen that wy(e) < vg(e). w(e) denotes wa(e).
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Example:
We have

(15) = 1111 = 10001 = 16 — 1,

but it is also true that

(15) = 1111 = 10111 =16 — 4 + 2 + 1.
Additionally, consider

(15)2 = 10001 = 11*000I = 2" — 2" ' — ... — 16 — 1, (3.3)

which gives a valid signed binary digit representation for any number of
digits 1 at the *.

This example demonstrates that a signed binary digit representation is no
longer unique like the ordinary binary expansion. In fact, there are always
infinitely many possible signed binary digit representations for any chosen
number e # 0. The pattern (3.3) used for 15 in the example above can be
applied to any signed binary digit representation creating infinitely many
valid representations.

There is also no unique shortest signed digit representation in general. While
for some values of e there is only one shortest signed digit representation,
like 7, which has the unique shortest representation

(7)2 = 111,

for many other values there are more than just one shortest representation,
for example

(19), = 10011 = 10101.

Fortunately, by putting some restrictions on the signed digit representation,
it is possible to define a representation uniquely. This unique representation
has the minimal possible Hamming weight, but it doesn’t necessarily have
the shortest possible length. The latter is not too great of a trade-off,
because it will be shown that the length will increase by at most one digit.
The next section will introduce the non-adjacent form (NAF), which gives
this unique special signed binary digit representation.

A signed binary digit representation can always be interpreted as the sub-
traction of two binary numbers, the first argument containing all positive
digits, the second argument containing all negative digits (see [MO90]). This
means that the value of any signed digit representation can be computed
using just one subtraction in Z.
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Example:
(15)2 = 10111 = (15)5 — (15); = 10011 — 100 = 19 — 4.

3.3 The non-adjacent form (NAF)

The need to have a uniquely defined signed binary representation with min-
imal Hamming weight for any given number e arises from the need to con-
struct algorithms, which work with such a representation. Those algorithms
should work efficient and, of course, deterministic.

The following definition introduces the non-adjacent form (NAF) of a given
integer. It shows both of the demanded properties, uniqueness and minimal
Hamming weight. The NAF has been rediscovered many times by several
authors (see [Gor98], p.138) and is sometimes referred to as a special recoded
binary representation (Booth-recoding, referencing [Boo51]) or as a canonical
signed-digit vector (see [EgK90], p.189).

Definition 3.7 (Non-adjacent form (NAF))
For e > 0, any signed binary digit representation

(B)Q = (e)\ﬁ(e)—la Crs(e)—25- -+ eO)a
e; € {—1,0,1} for all i, with no two adjacent nonzero digits, hence
ei'ei+1:0 VZZO;

is called a non-adjacent form (NAF) of e. The NAF of e = 0 is defined as
(0).

In this case, any such (e)s will be denoted as (e)aar, with length Aar(e) =
Asz(e).

As mentioned in definition 3.5, many authors (like [AW93], [Lin98]) explic-
itly use an infinite sum to describe the NAF, assuming that all but finite
many values are 0. The two notations are equivalent.

Several algorithms have been suggested to create unique signed binary digit
representations, most of which create the NAF, so most of them are equiv-
alent — at least for the binary case. Such algorithms have been suggested
by Jedwab and Mitchell in [JM89] Morain and Olivos in [MO90], and Arno
and Wheeler in [AW93]. This thesis will present these three algorithms in
the following sections.

3.3.1 Creating the NAF from the binary expansion

F. Morain and J. Olivos developed in [MO90] an algorithm to create a signed
binary digit representation from the ordinary binary expansion, replacing
sequences of two or more consecutive ones, also regarding isolated zeros.
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The algorithm creates a representation with no two adjacent nonzero digits,
hence it creates a NAF of the given number.

The binary representation (e), of a given integer e is scanned from right to
left and sequences of consecutive ones, denoted as 1%, are transformed into
a sequence of lower (or at most of the same) Hamming weight according to
the following rule

1%+ 109711, (3.4)

If a is chosen to create the sequence 1% of maximal length, the transformation
doesn’t interfere with the rest of the representation, because the leading
one is added to a zero, hence no problems with carried bits arise. But
this transformation is only optimal with a slight enhancement: While the
transformation is applied from right to left, the newly created leading 1 of a
replaced sequence must be taken into account when searching for the next
sequence of consecutive ones. In the case of isolated zeros, this enhancement
produces one nonzero digit less than rule (3.4) alone. While Morain and
Olivos themselves saw this problem, they tried to solve it using the extra
rule

1%01° — 10°T0°7'1. (3.5)

However, this rule would only correct the case of one isolated zero, therefore,
taking the leading 1 into account for the next step is more suitable to deal
with isolated zeros.
The NAF created by this algorithm can then be used for exponentiation
algorithms, which will be examined in chapter 4.
Example:
Let (e)2 = 111101111, then the application of the transition rule (3.4)
leads to the signed binary digit representation

(e)g = 111101111 ~— 1000110001

if applied to all sequences of consecuting ones at once.
Using the enhancement of determining the sequences to be replaced on
the fly, the transformation works as follows:

(e)p = 111101111 —> 111110001 —s 1000010001.

The rule (3.4) can be easily written as an algorithm that creates the NAF.
This algorithm will search the input for consecutive ones. Note that al-
though the Hamming weight is only reduced when there are three or more
consecutive ones, the transformation rule must be applied for all sequences
of consecutive ones (a > 2), because otherwise the algorithm would fail
in the case of isolated zeros (like 11011). Hence minimal weight can only
achieved if the NAF is completely produced.
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The total length of the resulting NAF is at most one digit longer than that
of the ordinary binary expansion of e, e.g.

Avar(e) € {Az(e), Aa(e) + 1},

a fact that will be proved in theorem 3.16. This observation has helped to
construct the following algorithm. Note that it is assumed that all e; = 0
for i > Aa(e).

Algorithm 3.8 (NAF transformation by Morain and Olivos)
(following F. Morain and J.Olivos in [MO90])
Input: The binary expansion (€)2 = (€x,(e)—1,€rg(e)—25- - - €0), € >0
Output: The NAF (e)aar = (Fanur(e)—1s Fanar(e)—2: - - -5 f0)
01 Seti:=0
02 while ((i < A2(e) —1)) do
03 if (6§ ==1 AND ejy; == 1) then

04 Set e :=1

05 Seti:=i+1

06 while (¢; == 1) do
07 Sete:=0

08 Seti:=i+1
09 Set e :=1

10 return (e)

The proof that the above algorithm really computes the NAF is part of the
following theorem.

Theorem 3.9 (existence and uniqueness of the NAF)
Every integer e has a unique NAF.

Proof:
1) existence
For e = 0, the NAF is defined as (0).

For e > 0, let (€)a = (ex,(e)=15 €xs(e)—25 - - - » €0) be the binary expansion
of e, which is uniquely defined. Assume that (e)2 is not yet in non-
adjacent form (otherwise, there is nothing to prove). The existence of
the NAF can be proven by showing that algorithm 3.8 produces the
NAF from (e)2. This proof is carried out using induction. Note that
a transformation of the form

01% — 10% 11
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preserves the value of that substring.

start of induction (induction over the length of (e)2):

Let ¢ € N be the minimal number such that the if-condition in line 3 of
algorithm 3.8 yields true, e.g. the minimal ¢ such that e; = ;11 = 1.
If (e)2 is not a NAF, there must be at least two adjacent nonzero
digits, hence such a pair (7,7 4+ 1) exists. Then the first ¢ digits are in
non-adjacent form.

assumption:

Let £ € N be the number of the current digit, at the time algorithm 3.8
evaluates the if-condition in line 3. Then the sequence (ex, ex_1,---,€p)
is in non-adjacent form. Now, (e)2 can be transformed further into a
sequence with a non-adjacent tail with at least (eg+1,ex,...,€p) being
in non-adjacent form.

inductive proof:

If the if-condition yields false, (eg+1,€k,---,€9) is already in non-
adjacent form and nothing needs to be shown. Otherwise, the if-
condition yields true and ex = ey = 1.

The latter implies that ex_; = 0. Therefore, with line 4 of algorithm
3.8 setting ej, := 1, the assumption still holds. Now let j > k+1 be the
value of ¢ at the end of the while-loop in lines 6-8, hence the maximal
number 5 > k + 1 such that ¢, = 1 for K+ 1 < ¢ < j in the input.
By setting all these values to zero in line 7, ¢; :=0 for k +1 <17 < 3,
the resulting sequence (ej,e;j_1,...,€x+1,€k,€—1) is in non-adjacent
form.

Now as j was chosen maximal, ej;1 = 0, hence, with line 9 setting
ej+1 := 1, and the assumption, it is (ejy1,€j,..., €541, €k, ---,€0) i
non-adjacent form.

Note that e, was nonzero before the transformation and after the
transformation. That means that if ; = k + 1, which is the minimal
value for j, the Hamming weight is unchanged, as eg2 was zero and
changed the value with ex,1. But if j > k + 1, the Hamming weight
is clearly reduced, as all values between e;,1 and ey are set to zero.

2) uniqueness
Suppose e can be written as two different NAF's,

a b
e=) e-2'=) ¢ 2 (3.6)
1=0 1=0

with (eq,€q—1,---,€0) # (€}, €y_1,...,€p). Assume without loss of
generality that ey # e, (otherwise subtract ep and divide both repre-
sentations by 2, e.g. delete ey and ej. Continue until ey # €j.)
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If eg = 0 then e is divided by 2 and because e}, # e, it also means
that e is not divided by 2. Therefore ey # 0 and e, # 0.

Without loss of generality, let g = 1 and e[y = —1 (otherwise switch).
Then e is not divided by 2. But because both sums in (3.6) are NAFs,
e =¢€; =0,s0in

a b
Se 24y r o ere-2oe
=0 1=0

the last two digits are 0, therefore 4 divides 2 - e and so 2 divides e
in contradiction to the assumption. The assumption must be wrong,
both NAFs must be the same, so it is justified to speak of the NAF of
a given number. O

Example 3.10:

1. The NAF can reduce the Hamming weight of a binary expansion
dramatically: Consider e = 2,097,151. Then it is

(e)p = 11111111111111111111 vo(e) = 20
!
(e)aar = 100000000000000000001 v3(e) = 2

2. On the other hand, there is not always a gain. In some cases, the
NAF preserves the Hamming weight (when it is already minimal),
but still increases the length. Consider e = 699, 051.

(e)e = 10101010101010101011 vo(e) =11 Xo(e) =20

(e)aur = 101010101010101010T01  wy(e) = 11 Apuur(e) = 21

3. And again, if the input is already in non-adjacent form, the NAF-
transformation will neither change weight nor length. But there
are also some other cases, when the NAF looks differently from the
binary expansion, but it has the same length and the same weight.
Consider e = 1,258, 291.

()2 = 100110011001100110011  1n(e) =11  Ag(e) =21

!
(e)aur = 101010101010101010101  w5(e) = 11 Anuar(e) =21

Theorem 3.9 showed that the NAF exists for every number e € Ny. The
facts that it also has the minimum possible Hamming weight and that the
length of the NAF is at most one digit longer than the binary expansion of
e will be the results of the following section.
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3.3.2 Creating the NAF from a signed binary representation

Although in many applications, the NAF will be build from the usual binary
expansion, every signed binary digit representation of some number e can
be used to build the NAF. The following two subsections will introduce two
algorithms, which provide such approaches. The first one will be used to
prove the minimal Hamming weight of the NAF, the second one, an efficient
on-line version, shows that the NAF can be computed in O(\5(e)) steps and
has at most one digit more than the binary expansion.

The algorithm of Jedwab and Mitchell

In [JM89], J. Jedwab and C. J. Mitchell also proposed an algorithm to create
a signed binary digit representation (called MSD representation, modified
signed digit representation) of a given integer from a given signed binary
representation. The algorithm transforms the given signed binary represen-
tation from right to left by transforming consecutive pairs (or sequences)
of nonzero digits. The resulting representation is sparse and therefore the
uniquely defined NAF of the given integer.

For this reason, the algorithm produces the same result as the algorithm of
Morain and Olivos presented as algorithm 3.8. However, this algorithm is
slightly more general than algorithm 3.8, because it can handle signed binary
digit representations as inputs. That makes it also slightly more difficult to
understand. For this reason, the algorithm of Morain and Olivos has been
used to introduce NAF transformation algorithms.

Algorithm 3.11 (NAF transformation by Jedwab and Mitchell)
(following J. Jedwab and C. J. Mitchell in [JM89])
Input: A signed binary digit representation (e)s = (ex;(e)=1, €x5(e)—25
.,€0) of a given number e > 0

Output: The NAF Of €, (e)NA.’F = (.f)\NA]:(e)—laf)\NA;:(e)—% s afO)

01 Set €xs(e) = 0

02 Seti:=0

03 while (i < A5(e)) do

04 increase i until & AND ej;1 are both # 0 OR i == A5(e)

05 if (i # eiy1) then

06 Set & = ejy1

07 Setey1 == 0

08 else

09 Setj:=i+1

10 increase j until e; # e;
11 if (¢f = 0) then

12 Set ¢ 1= ¢

13 else
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14
15
16
17

Setej :=0

Set ¢; 1= -¢;

for k from i+1 to j-1 do
Seteg :=10

18 return (e)3

Lemma 3.12 (Jedwab and Mitchell produce the NAF)

The algorithm 3.11 by Jedwab and Mitchell produces the NAF. In this, it
is equivalent to the Algorithm 3.8 of Morain and Olivos for ordinary binary
eTPansions.

Proof:

For e > 0, let ()3 = (ex;(e)—1, €rs(e)—25- - -, €0) be any signed binary
representation of e which is not in non-adjacent form (otherwise, there
is nothing to prove). Then algorithm 3.11 works as follows. Note that
transformations of the form

11 +—— 01, 11 +—— 01,
01¢ —» 10011, 0I* — T0“7'1,
11— 0°1, 11* — 041,

do not change the values of these substrings.

start of induction (induction over the length of (e)s3):

Let ¢ € N be the minimal number such that e; and e;; are both
nonzero digits (line 4). If (e); is not a NAF, there must be at least
two adjacent nonzero digits, hence a pair (4,7 + 1) exists. Then the
first i digits are in non-adjacent form.

assumption:

Let k£ € N be the maximal number such that (eg,ex—_1,...,e9) are
in non-adjacent form. (e); can now be transformed into a sequence
with a longer non-adjacent tail, with at least (egy1,ek,...,ep) being

in non-adjacent form.

inductive proof:

(e)5 is either a NAF already or exr1; # 0 and ex # 0 (line 4 yields
true).

The latter implies that e_1 = 0 and it leads to one of the following
cases:

case 1: epy1 # eg
This case includes 11 and 11. The pattern can be transformed
into ex4+1 := 0 and e; := —eg4+1. Because of the assumption

Brauer addition-subtraction chains



3.3: THE NON-ADJACENT FORM (NAF) 85

case 2:

that (eg,ex_1,...,€0) are already in non-adjacent form, the
same now holds up to eg41.
Note that the Hamming weight is reduced by 1.

ek+1 = €k
This case covers 1...1and 1...1.

Let j > 1 be the minimal number, such that e;; # ey (line
10). Then the whole substring (ex+, €x+j—1;---»€k+1,€x) can
be transformed according to the following:

The substring (ex4;—1, €k+j—2, - - - , €k+1, €k) is transformed into
(ek-i-j—b Ck+j—25- -5 Ck+1, ek) — (01 0,...,0, _ek)'
If egy; # 0, it must be e;y; = —ep due to the maximum

property of j, so e;y;+ e, = 0. Hence, if ex; # 0, let ey :=
0, otherwise let eg; := ey.

Note that if j = 2, then the Hamming weight is reduced if
ex+j 7 0, otherwise it stays the same. If j > 2, the Hamming
weight is clearly reduced because all digits between e and e ;
become 0.

Note that throughout the transformation, the Hamming weight of the
given signed binary digit representation does not increase.

Proof:

O

The algorithm 3.11 provides an easy way to determine the Hamming weight
of the NAF.

Theorem 3.13 (minimal Hamming weight of the NAF)
The NAF has the minimal Hamming weight vs(e) = w(e).

It has been shown in lemma 3.12 that during the application of algo-
rithm 3.11, where every signed binary digit representation for a given
number e can be transformed into its NAF, the Hamming weight is
never increased. Because this also holds for a signed binary digit rep-
resentation with minimal weight, the NAF itself must have minimal

weight.

O

The algorithm of Arno und Wheeler

In [AW93], Steven Arno and Ferrell S. Wheeler introduce another algorithm
to create the NAF from signed binary digit representations. It is presented
here, because it is an efficient on-line algorithm requiring O(A\;(e)) steps
and because it is also suitable to handle signed digit representations in other
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radices than 2. See section 3.5 for a brief view on a possible generalization. It
will also be used in theorem 3.16, where the length of the NAF is determined.
The algorithm scans through the input once using only the set of data
(€i+1,€4,€;), where ¢, € {—1,0,1} is used to represent the carry and the
function sgn(x) € {—1,0,1} computes the sign of an integer.

Algorithm 3.14 (NAF transformation by Arno and Wheeler)
(following S. Arno and F.S. Wheller in [AW93])
Input: A signed binary digit representation (e)s = (€x,(e)=1, €ry(e)—2/
.,e0) of a given number e > 0, the radiz or base r = 2 of (e)7.
Output: The NAF of e, (e)xar = (f)‘NAf(e),l,f/\NAf(e),Q, ..y fo)
01 Seti:=0
02 Sete:=0
03 while (i < As(e)) do
04 if ((ej + €) - (eix1 +sgn(ei + ¢)) == 0(mod r)) then

05 Set €41 := sgn(e + €)

06 Set fi :=¢; + ¢ —sgn(ej +¢€)-r
07 else

08 Set 41 :=0

09 Set f; ;= ¢; + €

10 Seti:=i+1

11 if (GAQ(e) == 1) then
12 Set f)\é(e) =1
13 return (f)

Theorem 3.15 (Arno and Wheeler produce the NAF)

The algorithm 3.14 by Arno and Wheeler produces the NAF for r = 2. In
this, it is equal to the algorithms by Morain and Olivos and by Jedwab and
Mitchell for ordinary binary expansion or signed binary digit representations
respectively. The algorithm needs O(X5(e)) steps.

Proof:

The proof of theorem 3.15 will be done using formal verification of the
algorithm 3.14. While the termination of the algorithm is trivial due
to 7 being strictly monotonous increasing with a start value below A5
(e > 0 is always assumed), the proof of the correctness will need a
more thorough analysis.

The correctness of the algorithm is equivalent to the proof of the cor-
rectness of the main while-loop by using a suitable invariant IV and a
loop condition C.
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It is obvious that the loop condition C should be
C={0<1i< X(e)}.

The invariant IV should demand that the created sequence (f;—1, fi—2,

.+, fo) should always be a sparse sequence. This can be expressed
by forcing that for all 0 < ¢t < 4 — 1 the equation f; - fr+1 = 0 must
hold. The invariant IV should also require the sum of all values to be
e. During the transformation, the sequence

(Exs(e)=15€xrs(e)=25 - - - » €it 1, €i + €y fi1, fi2y- -+, fo)

should always be a representation for e.

Therefore, consider

IV, = IV NIV,

with
v = {V0§t<’i—1:ft'ft+1:0}
As(e)—1 il
Vo = e= Z ek'2k+(€i+€i)-2z+2fk-2k
k=i+1 k=0

To prove that the algorithm is correct, the following scheme has to be
proven:
P :{i=0Ne=0NIVAC}
03 while (i < A5(e)) do
04 if ((ei + &) - (eir1 +sgn(ei + €)) == 0(modr)) then

05 Set €41 := sgn(ei + €)

06 Setfi:—=¢;+ ¢ — sgn(ei + 61) - r
07 else

08 Set €41 :=0

09 Set f; := ¢; + €

10 Seti:=i+1
Py : {IVAC)V {IV A=C)}
P3 : {IV A ﬁC’}
11 if (6A§(e) == 1) then
12 Set f/\g(e) =1

part 1: prove P;

According to lines 1 and 2 of algorithm 3.14, i = 0 and ¢y = ¢; = 0.
Because 1 = 0, I'V; is trivial, because nothing has to be shown. For
the same reason and because ¢y = 0, IV, just sums up all digits
€rz(e)—17 Exs(e)—2 - - - €0, Which add up to e by default.
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part 2: prove P»

P, has to be true after every run trough the while-loop. I'V; can be
shown in an inductive manner itself. If s = 0, no digit of (e)r4+ has
been constructed, hence all digits are sparse. Similarly, if 2 = 1, only
the single digit fo has been constructed, which is always sparse, too.

part 2.1: prove I'V; to be true

In the case where ¢ > 1, we need to differ on how the last digit f; 1
has been created in order to show that f;—; - f; = 0 holds. In or-
der to do this, the five values for ¢; 1 + ¢;1 € {—2,—1,0,1,2} will
be reviewed. Because r = 2, these are the only possible values for
the sum e; 1 + ¢;_1. They can be combined into three cases, where
e—1+e€-—1=1,e_1+€_1=—1lore_1+¢€¢-1=0 (mod 2).

case 1: e;_1 + €;,_1 = 0 (mod 2)

If e, 1 +€-1 =0 (mod 2), then the condition of the if-statement in
line 4 of algorithm 3.14 will always be true, because the product will
be 0 or a multiple of » = 2. Hence

fi-c1 = ei—1+e€-_1—sgn(eg_1+e€_1) T
2 (C1)-2 if et = 2
= 0—-0-2 ife 1+€6-1=0 =0

2—(1)-2 if ei1+ €1 =42
If fi—1 =0, then f; - fi_1 = 0 regardless of the value of f;. Therefore,

IV; holds.
case 2: e;_1 +€;_1 = —1
If e;_1 + ¢,_1 = —1, then the if-condition of line 4 can be either true

or false depending on the value of e;:

e; = —1 With this value, the if-condition evaluates to (—1) - (=1 +
—1) = 0 (mod 2). Hence f;_1 := e;_1 + €1 —sgn(e;—1 +
Ei—l) 2=-1- (—1) -2=1ande¢; := sgn(ei_l +€i—1) = —1.
Now, the next step (the actual step to be examined) has the
configuration e; + ¢; = —2, which leads to f; := 0 according
to case 1. Therefore, f;- fi_1 =0 and IV is true.

e; = 0 With e; being 0, the if-condition evaluates to -1 and the else-
branch is being executed. There, f; 1 = €;—1 + €1 = —1
and ¢; := 0 are computed. With these values, e; + ¢; = 0.
This results in f; := 0 according to case 1 and again, IV is
true.

e; =1 If e; = 1, the if-condition’s left side gives 2 and therefore,

fi—1 and e; are computed in the then-branch of the condi-
tional, f;_1 := —1—(—1)-2 =1 and ¢; := —1. This leads
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to the next step’s sum being e; + ¢, = 1 + —1 = 0 which
makes the algorithm set f; := 0 according to case 1. But
then, f; - fi_1 = 0 and IV; is proven.

case 3: e;_1+e€;_1=1

This case behaves very similar to case 2, but with respect to clarity,
cases 2 and 3 have not been combined. Again, the value of e; leads to
different cases:

e; = —1 In this case, the if-condition evaluates to 0 and the then-

e; =1

branch leaves f;_1 := —1 and ¢; := 1. This sets e; + ¢; to
—1+4 1 = 0 and therefore, according to case 1, f; := 0 and
with that the first part of the invariant, IV7, is true.

This case makes the if-condition result in 1 and the else-
branch to compute f; 1 := 1 and ¢ := 0. Again, with
e; = 0 and ¢; = 0, the sum is zero which proves IV; due to
the result of case 1.

In analogy to e; = —1, this case’s if-condition is true and
fi—1 := —1, ¢ := 1. This makes ¢; + ¢, = 2 = 0 (mod 2),
hence case 1 allows to conclude that f; := 0 and therefore,
IV; to be true.

part 2.2: prove IV, to be true

To show that I'V5 is true after each run though the while-loop, one has
to show that while before the loop started, IV, was true for 4, it is
now true for 2 4+ 1. This can be expressed by the statement

Az(e)—1 ] ) i—1
Z ek-2k—|—€i+1-22+1—|—(ei—|—6i)-2Z+ka-2k
k=142 k=0
= e =
)\5(8)71 . 7
S en 264 (e +eipn) 2T+ f - 2F
k=142 k=0

It can be simplified, because only for the indices ¢ and 1+ 1 any changes
appear, so it has to be shown that

(eiv1+€ip1) 2 + fi 28 = €1 - 277 4 (e 4 ) - 20,

This can easily be done by inserting the computed values for f; and
€;+1 depending on whether the then-branch or the else-branch of the
conditional has been chosen.
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then: In this case, inserting the definition for f; and €; 1 from lines
5 and 6 of algorithm 3.14 leads to

(i1 + €ip1) - 271+ f; - 20 —ejpq - 207 — (e; + €;) - 2°

= (ei1 +sgn(e; +€)) - 271 + (e; + € — sgn(e; +¢€;) - 2) - 2¢
—eip1 - 2 — (e + ) - 2

= 201 (e;11 +sgn(e; + €;) — sgn(e; + €;) — eit1)
+2°- (e; + € — (&i + €)))

= 0.

else: For this analysis, the definitions of lines 8 and 9 have to be
inserted:

(eip1 +€ir1) - 27 + fi- 20 — e - 2! — (e + ) - 2°
= (ei41+0)- 27 + (e; + €) - 20 — ejq1 - 207 — (e + ) - 2¢
_—

Therefore, 1V; and IV, are true at position Ps.

part 3: prove P3

At the point of Ps, the invariant IV is true, because it is true after
each step through the loop. If the while-loop ended, i = Az(e). It is
obvious, that if there’s still a carry left, it has to be added to the next
digit, which is a zero. It is left to show that the resulting sequence
(fr3(e)> Frg(e)=15 ---» fo) is sparse even if the carry is 1. If it is 0, no
further action has to be taken, therefore, IV stays true and a sparse
sequence representing e has been constructed.

But if €),() = 1, then in the last application of the if-conditional, the
true-branch must have been chosen, because in the else-branch, ¢; is
always set to 0.

Knowing this, the if-condition reveals that (ex;(c)—1+€xs(e)=1) (€xs(e)
sgn(ex,(e)—1 + €xs(e)=1)) = 0 (mod 2). Because ey, () = 0, this means
that (ex;(e)—1 + €xy(e)—1) * 580(Er5(e)—1 + €xs(e)—1) = 0 (mod 2), which
means that ey e)-1 + €xye)-1 = 0 (mod 2). According to case 1
from part 2.1 of this proof, fy;()—1 must have been set to 0, hence,
Dste) " Frg(e)-1=0.

Therefore, the constructed sequence is a sparse signed binary repre-
sentation for e, which means that it is the NAF, because it is uniquely
defined according to theorem 3.9.

The claimed costs can be easily deducted from the fact that the loop
is exactly executed Az(e) — 1 times. O
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After these different algorithms, that all produce the NAF starting at slightly
different points, it still remains to prove that the length of the NAF lies in
very narrow bounds, in fact, it cannot increase the binary expansion by more
than one digit.

Corollary 3.16 (The length of the NAF)

Let (€)2 = (exy(e)—15Cra(e)—25 - - - 5 €0) With ex,e)—1 = 1 be the binary expan-
sion of a given integer e, and let (e)aar = (Fayur(e)—15 Fanar(e)—2s -+ -5 fo)
be the NAF of e. Then the length Aar(e) can take one of two values:

Aar(e) € {Xa(e), Az(e) +1} (3.7)

Proof:

The lower bound Aar(e) > Aqo(e) arises by the fact, that the NAF
transformation of the binary expansion (algorithm 3.8) can only re-
solve runs of adjacent ones by adding a carry bit to the remaining left
part of the binary expansion, while possibly changing the current digit.
Hence it must be shown that the leading digit cannot be eliminated
without gain in length. Algorithm 3.8 shows that a 1 is only changed if
there are adjacent ones next to each other. If the algorithm examines
the bit ey, ()2, two situations may arise, 11 and 10. In the first case,
the resulting string starts with 101 or 100 (depending on the history),
in the second case, the string is left unchanged at 10. Therefore, the
length cannot decrease.

The upper bound follows equally, or with a reference to algorithm 3.14,
where it can easily be seen that the highest digit the algorithm may
modify is fi,()- O

As a result of this section, it is clear that the non-adjacent form can be
computed from either the binary expansion or any signed binary digit rep-
resentation previously gathered in an efficient way. Especially the on-line
algorithm 3.14 by Arno and Wheeler shows that the NAF can be computed
in O(Az(e)) steps. This is important in practical applications, because al-
though the model used in this thesis only counts operations in the underlying
field of the exponentiation problem, practical applications will face the need
to compute the NAF. However, field operations are usually very expensive
compared to the binary changes that NAF transformation algorithms apply
(in a general ring, the basic operations, like multiplication, require O(Az2(e)?)
steps using classical arithmetic (see [GG99], p. 757 and §11)), hence the cre-
ation of the NAF is neglectable.

In this sense, the NAF provides a good basis for introducing the subtrac-
tion, because of the uniqueness, the minimality of its Hamming weight and
the minimal increase in length. The next chapter will analyze, how this
representation may be used to enhance exponentiation algorithms. In order
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to do so, knowledge about some more properties of the NAF is needed and
will be provided in the following section.

3.4 Properties of the NAF

In order to be able to analyze the use of the non-adjacent form for exponen-
tiation algorithms and the creation of addition-subtraction chains, some spe-
cial properties of this special signed digit representation have to be known.
This section will state results about the total number of sparse signed digit
strings for a certain length n, about the expected length of the NAF com-
pared to the length of the binary expansion and about the occurrence and
distribution of the digits. Some parts of the results have not been published
yet.

First, the examined properties are defined.

Definition 3.17 (number of and average length of sparse strings)

(1) For any positive integer n € N, let Ny(n) be the set of all non-adjacent
signed q-ary digit strings with at most n digits (leading zeros being
acceptable). Formally, it is

Nyn) = {w=(wn1,.w0) € {—g+1,rong—1)" |
w; - wip1 =0 VO§i<n—1}.

Let sq4(n) € N denote the total number of sparse signed g-ary digit
strings with at most n digits (leading zeros being acceptable). This
means that sq(n) is the cardinality of Ny(n),

sq(n) = #Ny(n).

Let Val(Ng(n)) denote the set of the integer values of all signed q-ary
words contained in Ny(n),

Val(Ny(n)) :={e e N | (e)axar € Ny(n)}.
For w € Ny(n), let Val(w) := e iff (e)xuar = w.

(2) For any positive integer n € N, let N§ (n) be the set of all non-
adjacent signed q-ary digit strings with exactly n digits (hence lead-
ing 1 mandatory), that encode a number e € N, whose binary expansion
needs one digit less,

Né’l)(n) = {w=1,wp_2,...,w0) €{—q¢+1,...,q—1}" |
JeeN: (e)pur =w A A2(e) =n—1}
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Again, let si " (n) denote the number of such strings, e.g. let s§ " (n)
denote the cardinality of Ny " (n),

sy Y (n) == #NSV(n).

Clearly, it is Ny " (n) C Ny(n), sy V(n) < sq(n) (consider e =2"1).

(8) For any positive integer n € N, let N\ (n) be the set of all non-adjacent
unsigned g-ary digit strings with at most n digits (leading zeros
being acceptable). Elements w € Nq+(n) only consist of the digits 0,
..., g1 Itis

Nf(n) = {w=(wp1,...,w0) €{0,...,¢ = 1}" [ w; - w;11 =0
VOo<i<n-—1}

Again, let s,‘; (n) denote the number of such words w,

sq(n) == #N/ (n).

3.4.1 Determining the number of NAF strings
with length n

Especially for those exponentiation algorithms that precompute possible
window values, it is important to know how many different window val-
ues may appear. This is the problem to determine the total number of
different sparse signed digit strings for a certain number of digits (leading
zeros being acceptable). Some of these numbers are depicted in table 3.6.
It shows that there are more non-adjacent strings with a fixed number of
digits than binary expansions. The following theorem counts these numbers
exactly. The special case ¢ = 2 has been shown independently from the
recursive formula in part 1 in [EgK90] as theorem 2. The recursive formula
(3.8), which gives a good understanding about how algorithms may build
these sparse strings (see algorithm 4.11), and the explicit formula (3.9) for
general g seem not to have been published yet.

n s2(in) | n s2(n) | n  s2(n)
1 3 6 8 |11 2731
2 5 7 171 | 12 5461
3 11 8 341 | 13 10923
4 21 9 683 | 14 21845
5 43 10 1365 | 15 43691

Table 3.6: Some numbers of sparse signed binary n-digit strings
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Theorem 3.18 (number of sparse signed g-ary digit strings)

1. The total number of sparse signed q-ary digit representations of in-
tegers using exactly n bits (leading zeros being acceptable) can be de-
scribed by the following linear recurrence:

s4(0) = 1
s1) = 2g—1
sq(n) = sq(n—1)+ (29 =2)-s4(n - 2) (3-8)

Vn>2
For all n € N, s¢(n) is odd.

2. The generic linear recurrence (3.8) from part 1 evaluates to the fol-
lowing explicit formula:

_ 1 n n 1 n n 49 -3
S(I(n) — 9 (>‘+ + )‘7) + 9 (A—F A7) \/8q——7 (3'9)
. 1 1
1 1
and A 5 5 \/Sq
In the case where ¢ = 2, this formula is equal to
1
s2(n) = 3- (272 4 (—1)"H). (3.10)
Formula (3.10) has also been shown by 0. Egecioglu and ¢. K. Kog

in [EgK90)].

3. The set Val(Ny(n)) of the integer values corresponding to all elements
w € Ng(n) is for alln € N and q > 2 a subset of the following interval,

Val(Ny(n)) C {—L (qn+1—%+(—1)”+1-q;—1),...,

g+1

1 1 9+1 nt1 4—1

— . - SN N NN
g+1 (q ;T 2 (3.11)

For q = 2, the set Val(Ny(n)) is equal to the interval, hence Ny(n)
contains the non-adjacent forms of all integers between the bounds of
the interval, giving the simplified equation

Val(Ny(n)) = {—%-(2“%%),..., (3.12)
1 (g, (D) =3
s |3 :
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For q > 2, Val(Ny(n)) is a real subset of the interval, the smallest
positive integer without a NAF in Ny(n) is g + 1.

Proof:
proof of part 1

For the first two start values, the value of s,(0) is a definition. It has
to be one, because there are no non-adjacent words with zero digits
and the value is used as a factor.

For s4(1), the number of different sparse signed g-ary digit strings with
one digit can be counted easily. In order to do that, note that for any
signed g-ary representation, there are 2q — 1 possible digits, consisting
of the 0, the positive digits 1, 2, ..., (g-1) and the corresponding
negative digits 1, 2, ..., (q—1). This also implies that there are
2- (g — 1) = 2¢q — 2 nonzero digits.

A sparse signed digit string of length 1 can consist of any of the 2¢ —1
possible digits, hence s4(1) = 2¢g — 1.

For any other value of s,(n) with n > 2, consider the structure of the
possible strings. There are two possible cases: Such a string w € Ny(n)
may either start with a zero or with a nonzero digit. If it starts with a
zero, the remaining n — 1 digits may form any sparse signed g-ary digit
string of length n — 1, which gives s,(n — 1) possibilities (see figure
3.1).

o] Ny(n — 1) |

Figure 3.1: Configurations of w € N,(n) starting with 0

If on the other hand w starts with any nonzero digit, the next digit
must be a zero in order to guarantee the resulting string to be sparse.
The following n — 2 digits may again form any sparse signed g-ary
digit string of length n — 2. With the possible 2¢ — 2 nonzero digits
at the position of the first digit, there are (2g — 2) - s4(n — 2) possible
configurations (see figure 3.2).

[« ]0] Ny(n —2) |

Figure 3.2: Configurations of w € N,;(n) not starting with 0

Because both cases are disjoint, these results prove the claimed recur-
sion s4(n) = sq(n — 1) + (29 — 2) - s¢(n — 2).
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sq(n) is odd for all n € N, ¢ > 2, because for every positive element
w € Ngy(n), the element encoding the negative value of w is also in
Ny(n) (negate all digits). This gives an even number of elements and
together with 0, which has no corresponding element, s,(n) is always
odd.

proof of part 2

The explicit formula is best proven using induction over the number
of digits n. Within the following proof, assume

Z = A —A_=8¢—7 (3.13)
then it is obviously 22 = 8¢ — 7. This will be used for abbreviations
within the equations.
start of induction over n
According to the claimed formula (3.9), it is

4q — 3
Z

54000 = - +20)+ % (AL =20y

N~ DN =

2=1,

which gives the correct result for s4(0) according to part 1 of this the-
orem.

Similarly, it is

1 1 4q — 3
s1) = S A+ A )+ 5 (A =A) - —

1 1 zZ2 1 Z 1

- . (z24Z242_Z Z . (4g —
2(2+2+2 3 )t a=3
1

= --(1+49-3)
2

= 2q-—-1

which is again proven right by the first part of this theorem.
assumption

Assume formula (3.9) to be true for all 0 < k£ < n. Then it can also
shown to be true for £ = n + 1.
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inductive proof for k =n +1
For sq(n + 1), the linear recurrence (3.8) will be used:

sqn+1) = s ) + (20— 2) - sg(n — 1)

= ((Ag LAT) (A - AP -
+(2¢-2) - (AT AT

1g—2)- (o 223 3>

4q -3
Z

zZ
= S () (20 —2) )
+H -

+(2¢—2)- A\ =A"1))  (3.14)

The right side of this equation can now be transformed into the claimed
formula by using the equations

AE 4+ XF) 4 (2¢—2) - B4 08 = B N (3.15)
(AE —XF) 4 (2g—2) - BT =0T = AEHL\EFL (3.16)
The following steps will prove this formula starting from the form

found in (3.14). Some transformation steps may become clearer if
they’re read from bottom to top:

E +05) 4+ (2 —2) - (AEL 4 2B

= OER) 4 (87— 8) - (VT A
= ot (BT D)
- ()\’i+>\’i) % <Z22+§_§_%>,(>\i—1+)\13_1)
N
2
(-2)-(-9c]
= Q54X b (2 Xk - Z ok )
= O D ) O+ )
= SRS 0f -

1
2
1 Z 1 Z
- (5*5)*“(5‘5)*’1 = (g akt
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Equation (3.16) follows completely analogously. Now (3.14) can be
easily transformed into

4q — 3
V8qg =T’

-QT4+AT“y+%-QT4—AT“y

N —

se(n+1) =

proving the claimed explicit formula.

The formula of Egecioglu and Kog follows by setting ¢ = 2. Note that

Z = +8-2-7=3
wo ez
1 Z
o= 55—l
and hence
san) = 5o (D) (2 (1))
3

W WO WN| =

proof of part 3

Let m:=qg-1. Then the highest number to be represented with a sparse
g-ary n-digit string is obviously mOmOm0...m0 if n is even and if n
is odd mOmOmO0... m. The lowest possible number can be obtained
by switching all occurrences of m into m. Therefore, all values of
Val(Ny(n)) must lie between these bounds. The equality for ¢ = 2
will be proven by counting the possible values between the minimal
and the maximal possible value to appear. With the results of part
1, the equality will follow. For ¢ > 2, a counterexample will be given.
To get the bounds first, the two cases of n being even or odd will be
analyzed separately.

case 1: Let n be odd.
Then the highest number A that can be displayed with n
sparse g-ary digits is
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case 2:

n digits
—N—
A = Val(mOm0m0...m)= Y (¢—1)-¢"!
k odd
n>k>0
= D (g-D-¢""= DY (¢-1)-¢!
n>k>0 k even
n>k>0
g"—1 1
= (¢g—1)- ——(A—(¢g—-1
(@-1- =5 - (A=)
1 -1
=2=A4+--A = q"__14_g___
q
1
= A = — ("t —qg+qg-1
i1 @ ata=1)
1 n+1
= — —-1).
1 )

The lowest number B that can be displayed with n sparse

g-ary digits is now due to symmetry
1
qg+1

Let n be even.

.(qn+1__

1).

Then the highest number A that can be displayed with n

sparse g-ary digits is

n digits
A = Val(mOm0...m0) =
= Y (¢-1) ¢ -
n>k>0
qg" —1 (1
= q— - J— —
(¢—1) = .
:>A—|—1-A = ¢"—1
q
N A= 1 g
T gyl T

Yo (g-1)-¢""

k even
n>k>0

d o (g—1)-¢""

k odd
n>k>0

.A>

Again, the lowest number B that can be displayed with n

sparse digits is now due to symmetry

1

KT

n+l

q)-
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To combine both cases, the following alternating term is used:

{ —1 if nis odd

_g+t (—1)n+t. -1
—q if nis even,

2 2

and because all other values of the elements of Ny(n) must be located
between the bounds, the claimed formula (3.11) follows.

For ¢ = 2, the bounds are equal to

1 3 1
+ . 271+1__ -1 n+l =

giving formula (3.12). As the alternating term always makes sure that
the bound is an integer and the alternating term’s value is < 1, it will
always make sure that the result is corrected towards the next lower
integer (in case of the upper border) or towards the next higher integer
(in case of the lower border). Hence, the Gaussian brackets notation
follows immediately.

The equality of the set of values and the stated interval can be shown
by comparing the cardinalities of both sets. The set Val(Ny(n)) con-
tains as many elements as Ny(n), which has been defined as sq(n). The
interval contains the following number of elements (including zero):

1 _1n—|—1_
2§<2n+1+u%)+1

= (2" 4 (—)"! -3 43)

Wl W]

. (2n+2 + (_1)n+1) _ sq(n)

Therefore, both sets must be equal.

For g > 2, consider the following integer e = g+1: It is (e), = (11) and
assume that there was a sparse signed g-ary digit string representing
e. In order to do that, it must consist of at least three digits. If the
last digit was 0, then g + 1 would be a multiple of g, which it isn’t.
Therefore, the last digit (the rightmost) must be nonzero. Then the
second last digit is bound to be zero.

As e is positive, the value represented by the leftmost n— 2 digits must
be positive. The lowest possible positive integer that can possibly be
represented by these digits is (100) = (¢?),. If e can be represented
sparsely, then the last digit must be low enough to reduce that value
to ¢ + 1. But as the lowest possible value of a signed g-ary digit is
q—1 =1 — g, this means that it must be

@ —qg+1 < g+1=(11)
e ¢ < 2.
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But for ¢ > 3, it is ¢> > 2¢ and this proves the assumption to be
wrong. Therefore, there are numbers in the interval that do not have
a non-adjacent g-ary digit string in N,(n), hence, the set Val(Ny(n))
must be a real subset of the interval. O

Knowledge about the value of so(n) and about the words contained in
Ny(n) is vital for the precomputation step of any addition-subtraction chain
method using the NAF as the input representation, because all these values
have to be precomputed. An efficient way to compute all z¢ for (e)aar €
Ny (n) will be given in lemma 4.10, where the precomputation step of the
NAF-based Brauer method will be examined. The number s9(n) will be
needed for comparisons with the ordinary Brauer method in chapter 4, too.

3.4.2 Determining the average length of the NAF

It has been shown in chapter 2 that the length of the chosen g-ary repre-
sentation determines the number of ¢-steps necessary for exponentiation.
Therefore, analyses require exact knowledge about the average length of the
representations the algorithms are based on. It has been shown in corollary
3.16 that the NAF is either equal to or at most one digit longer than the
binary expansion. For further analyses, it is of interest how often the NAF
increases the length, e.g. what is the average length Axqr(e) of the NAF
compared to the binary expansion length As(e) ?

The possible increase is only very slim, hence, it will only be able to account
for a small constant amount of additional operations. It is of interest though,
because in some cases, with Brauer’s method, the additional digit may lead
to an additional window, which requires some additional operations.
Additionally, the question has a nice solution as the following theorem shows,
which seems not to have been published anywhere yet. Table 3.7 shows the
first 16 values of the constructed sequence s “(n) for ¢ = 2.

n 1 2 3 4 5 6 7 8
ssP@n) 0 0 1 2 5 10 21 42

n 9 10 11 12 13 14 15 16
sS(n) 85 170 341 682 1365 2730 5461 10922

Table 3.7: The first 16 values of the sequence s5 " (n)

It has been shown in part 3 of theorem 3.18, that for a general choice of g, the
set Ny(n) does not contain the non-adjacent forms of all integers in a certain
range, which means that there are values for e that cannot be expressed by
a sparse signed g-ary digit string with all nonzero digits being separated.
It is the main reason, why it is not feasible to generalize the NAF in this
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way. See section 3.5 for more details about possible generalizations. Due to
this fact, thoughts about sy ”’(n) are only interesting for ¢ = 2. Therefore,
the following theorem only gives answers for this case needed within further
analyses.

Theorem 3.19 (Expected length of the NAF)

Let ()2 = (exy(e)—15€rn(e)—2 - - -  €0) With ex,e)—1 = 1 be the binary ezpan-
sion of a random integer e, and let n := Xy(e) + 1. Let s5V(n) denote the
number of sparse binary digit strings that encode a number whose binary
expansion is one digit shorter (as defined in definition 3.17).

Then the following equations hold for the the numbers séﬁl)(n) :

S V(n) = %-(2n—3+(—1)"+1), (3.17)

with the alternating term evaluating to —4 if n is even and —2 if n is odd.
An alternative formulation of formula (3.17) is

V() = l2"3_1J . (3.18)

The expected length of the NAF is Aa(e) or Xa(e) + 1 according to theorem
3.16. The higher value appears in the following number of cases:

2 (=1)"+3
Prob[Mar(e) = nlha(e) =n—1] = 3 (?))T
n—soo 2
3 (3.19)

Proof:
proof of formula (3.17)

This formula is best proven using induction over n, the length of the
NAF of e.

start of induction over the length n of the NAF

Table 3.8 shows the transformation of all binary expansion with n —1
digits and the leading digit 1 into their NAF for n € {1,2,3}. It can
be seen, that for n = 1 and n = 2, there are no binary expansions that
lead to a NAF with more digits, for n = 3, there is only one binary
expansion of length 2, (11), which counts for s5 V(3). Together, it is

S§0) =0 =5 (1-1)=g-@"-2)
s57(2) =0 :%-(2—2):%-(2"—4)
s$V(3) =1 :%-(4—1):%-(2”—2).
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n-1 =20 n-1=1 n-1 =2
(e)2 (e)aar | (e)2 (e)nar | ()2 (e)aar
1 —_ 1 10 — 10
11 — 101

Table 3.8: The first NAF transformations for exact n — 1
digit numbers for n — 1 = 0,1,2

assumption

Assume the formula (3.17) to be proven for all 1 < k£ < n — 1. Then
it also holds for k£ = n.

inductive proof for k = n

To be able to apply the induction technique, one has to find a re-
cursive formula, so the value for ¥ = n can in some way be traced
back to known values. To find that recursive formula for the sequence
(5577(n))nen, consider counting the elements of s5 ' (n) in the follow-
ing manner:

If n is given, then we first have to determine the number of binary
expansion with length n — 1 that start with a 1, which are 272, Be-
cause we're only interested in bit strings that increase the length, we
may leave out those strings starting with zero, because according to
theorem 3.16, their NAF can have at most n — 1 digits.

Then we need to know how many of those 27 2 elements have a NAF,
that is one digit longer than the binary expansion. We have half
of the above number of strings that start with 11, where the NAF
transformation will increase the number of digits by one, because all
presented algorithms can only solve adjacent nonzeros by moving a
carry value to the left. Hence, we have 2”2 many elements already.

In addition to those, we need to look for elements starting with 10,
where the NAF transformation produces a l-carry at the position
€xy(e)—3, abt the bit directly right of 10. But these are exactly all
bit strings of length n — 3, starting with a 1, whose NAF requires an
additional digit on the left, which is already known to be s5 " (n — 2)
many. Therefore, it is

$70m) = 27455 (n - 2).

Now we have the recursion we need to apply the induction technique.
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We have

1
3(2_1)(77,) 45. 271—3 + E . (Zn—Q —34+ (_l)n—l)

— . (3 . 27&—2 + 27),—2 -3 + (_1)7L+1)

| =S| =

. (2n — 3+ (_1)n+1) .

proof of formula (3.18)

As in formula (3.17), the last term evaluates to either —% or —% and
5579 (n) € N, the value of the first term is always corrected towards the
next lower integer. This is expressed by the Gaussian bracket notation

in formula (3.18).

proof of formula (3.19)

The stated probability can be shown by a counting argument, find-
ing the ratio between the set of binary expansion with length n — 1,
whose length is increased when transformed into the NAF — counted
by s5V(n) — and the total number of (n — 1)-bit strings starting with
1, which is 2" 2. Hence it is

sy (n)

Prob[ANA}-(e) =n \ )\2(6) =n-— 1] = on—2

(3.17) oan 3+ (_1)n+1

6. 2n—2

B g_(—l)"+3

-3 3.9n—1
noo 2
3

O

The third counter of a set of sparse strings defined in definition 3.17, s;(n),
that counts the number of unsigned non-adjacent binary digit strings, will
be needed for the NAF-based binary method, where it will be necessary to
know how many of the possible inputs do not require an inversion. The
answer to this question states the following theorem. Due to the fact that
the sparseness of single nonzero digits is not a feasible way to define a general
NAF, the results are only of interest for the binary digit case.
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Theorem 3.20 (determining s7 (n))

The number of sparse signed binary digit stings (NAFs) with n digits, which
do not contain the negative digit 1, which is the same as the number of sparse
unsigned binary digit strings, is the (n + 2)nd Fibonacci number,

()" ()"
Vb

s3(n) = Fpyo= (3.20)

Proof:

According to literature (see for example [BSMM95], p. 708), the num-
bering of the Fibonacci sequence is assumed to be Fy = 0, F; =
1, Fo=1, F3=2, F; =3,...

The only 1-digit sparse unsigned binary digit strings are 0 and 1, hence
ss(1)=2=F
2 3-

The only 2-digit sparse unsigned binary digit strings are 00, 01 and
10, and therefore s5 (2) = 3 = Fy.

For other values of n, it is clear that with the same considerations as
in the proof of formula (3.8) in theorem 3.18, a sparse unsigned binary
digit string must either start with 0 and may be continued with any
sparse unsigned binary digit string of length n —1 or it must start with
10 and may be continued with any sparse unsigned binary digit string
with n — 2 digits. This leads to the well known Fibonacci recurrence

s3(n) =sf(n—1)+s;(n—-2),

with the same start values as the traditional Fibonacci sequence, shifted
by two positions and hence

3;_(77,) =Fpio = \/g

The last equation can be found in many standard books on analysis,
for example in [Heu94], p. 378. O

3.4.3 Determining occurrence and distribution of digits

For the generalization of the binary expansion for exponentiation, it is al-
ways crucial to know about the Hamming weight of the string that is to
be partitioned and used and about the expected number of nonzero or zero
windows. These analyses depend on a good knowledge of the expected oc-
currence of the possible digits and their distribution over the whole string.
The following theorems will answer these questions.
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Theorem 3.21 (occurrences of the letter 0 in the NAF)

(from O. Egecioglu and C. K. Kog in [EgK90], p.191)

The total number of occurrences of the letter 0 over all signed binary digit
strings of length n is

(24n + 56) - 2" 4+ (8 — 3n) - (—1)"
27 )

Cn = (3.21)

Proof:

(following O. Egecioglu and . K. Kog in [EgK90], p.191)

Let £ denote the formal language of all words w over the alphabet
{1,0,1} in which none of the patterns 11,11,11,11 appears. With the
same thoughts that build the recursive formula (3.8) in theorem 3.18,
it is easy to see that L satisfies the relation

L = e+1+1+10L+10L+0L, (3.22)

where € denotes the empty word and + denotes disjoint union. Let
A(w) denote the length of w and A(w)|o denote the length of w only re-
garding zeros, hence the number of zeros in w. Consider the generating

Z t)\(w w)|0

weL
It follows from (3.22) that f. satisfies

function

fo(t,z) =142t + 282z fr(t, ) + tofe(t, z),

and therefore
142t
= - .2
fﬁ(tax) 1 — 4z — 2821 (3 3)

With this generating function f, the generation function of the se-
quence (;, can easily be found from f(t,z) as

cht" = —fﬁ (t,1),

where the substitution z = 1 is carried out after the differentiation
with respect to z. From the expression (3.23) we obtain the formula

0 t-(1+2t)2

_ 1 R S

o e = Gy
_ 8 _ 1 2 1  n 1 1 1
9 (1-202 27 1-2t 27 14+t 9 (1+1)2
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and therefore

(24n + 56) - 2" + (8 — 3n) - (—1)"

Cn = 27

O

Now we can take a closer look an the average Hamming weight of the NAF.
The NAF has minimal possible Hamming weight, as it was proved in the
last section, while only needing at most one digit more than the ordinary
binary expansion. It is of great interest, what the average Hamming weight
is and how it compares to the average Hamming weight of the ordinary
binary expansion. For this case, there have been interesting results. They
state that the binary Hamming weight is greatly reduced compared to the
average binary expansion, leading to great improvements when using the
classical binary method on top of the NAF (see section 4.1).

Theorem 3.22 (average Hamming weight of the binary NAF)
(from O. Egecioglu and C. K. Kog in [EgK90], pp. 191-192)

The average Hamming weight of the NAF of a given integer is

Cn 1

B (vnvar(e)) =1 — nsm 3

Sl

Proof:
(following O. Egecioglu and C. K. Kog in [EgK90], pp. 191-192)

The fraction

Cn

n - s3(n)

describes the average ratio of zeros on n digits in every element in
s9(n). From the formulas (3.10) for so(n) and (3.21) for (,, it follows
directly that

Cn ~ (24n+38)-2" 4 (8 —3n) - (—1)"
n-so(n) 9n, - (272 + (—1)n+1)
B 27 . (24n + 8) (8 — 3n) - (—1)"
TP () ) O (2 (<))
neo 24n
36n

n—soom - s2(n) 3
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The last result of this section aims to give an idea about the probability
distribution of the Hamming weight. It allows to compute the expected
values of a certain Hamming weight to appear as the Hamming weight of
a random exponent e. The theorem is mentioned to complete the results
about the probabilistic behaviour of the NAF.

Theorem 3.23 (probability distribution of vz(e))

(from S. Arno and F.S. Wheeler in [AW93], p. 1009)

Let € be a random wvariable on the space of positive integers, whose g-adic
expansion requires exactly n digits. Then for 1 <1i <n we have

Prob(vz(e) = k)
1
q" — qn—l

(2w (5F) (50)
Eewomeam (1) (11))

b=1

Proof:

Because this theorem does not contribute to the main objective of this
thesis, the proof for theorem 3.23 is omitted. It can be found as the
proof to theorem 4 in [AW93](p. 1009). O

3.5 Generalizations of the NAF

As a result of theorem 3.18(3), it has been seen that the NAF cannot be
generalized to a signed g-adic digit representation (or representation in radix
q) in the same manner as the NAF was originally designed. The reason is,
that some values cannot be displayed if all nonzero digits of a general NAF
have to be non-adjacent, e.g. surrounded by zeros. The proof to theorem
3.18(3) showed that for e = ¢ + 1 in a g-adic representation. Therefore, a
possible generalization must weaken that requirement.

A number of solutions have been suggested, all of which provide unique
minimal representations for any input e. Examples can be found amongst
others in [AW93], [Lin98], [Par90] or [CL73].

The representation suggested by J. H. van Lint in [Lin98] is briefly described.
It provides a generalized NAF for arbitrary bases ¢ € N, which is achieved
by requiring adjacent digits to be admissible according to the following def-
inition.
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Definition 3.24 (admissible pairs of integers)
(from J.H. van Lint in [Lin98], 12.2.1)
Let b,c € Z,|b| < q,|c| < q. The pair (b,c) is called admissible if one of the
following holds
(i) b-c=0,
(i) b-c>0 and |b+c| <gq,
(11i) b-c <0 and |b] > ||

For ¢ = 2, this definition is equal to the definition of ”non-adjacent” (see
definition 3.7), because cases 7i and %i% cannot appear. Using definition 3.24,
the general NAF can be defined as follows:

Definition 3.25 (a general NAF: NAF,)
(following J. H. van Lint in [Lin98], 12.2.2)
For a given number e € Z, a representation of the form

o
€= Z € - qia

i=0
with e; € Z,|e;| < q Yi,e; = 0 for all but finite many i's, ¢ € N,q > 2 the
base of the representation, is called a general NAF for e to the base q if for
every i > 0, the pair (ej+1,e;) is admissible.
The general NAF for e to base q is denoted as NAF,(e) and the length of
the representation is defined as

Az, (e) =max{i €N | e; #0} + 1.

The above definition provides a unique general NAF for every e € Z with
minimal Hamming weight equal to the arithmetic weight. For more infor-
mation about this general NAF see [Lin98], §12.2.

Martin Otto 2001, Diplomarbeit



110 3. ADDITION-SUBTRACTION CHAINS

Brauer addition-subtraction chains



Chapter 4

Exponentiation using the
NAF

This last chapter will now use the NAF introduced and analyzed in the last
chapter to form the addition-subtraction variants of the binary method and
of the m-ary method. Both new variants are analyzed in detail and the
results will be compared to those of the traditional variants introduced in
chapter 2. As the result of this chapter and of this thesis, the cost com-
parisons will lead to inequalities, which can be used to determine for every
application scenario, whether the binary expansion is superior or inferior to
the non-adjacent form as a basis for a chosen exponentiation algorithm.

Given the non-adjacent form, a good basis for exponentiation algorithms
seems to be found. The result of theorem 3.22 shows that the Hamming
weight of the NAF can be reduced by 33% on average if compared to the
ordinary binary expansion. Although, the resulting sequence is sparse, which
decreases the chance of long zero runs. Additionally, inversions have to be
performed. Therefore, it has to be analyzed, whether the replacement of the
binary expansion by the NAF leads to significant improvements in the costs
of exponentiation algorithms or not. The following sections will review the
binary method presented in section 2.2 and Brauer’s method presented in
section 2.3 and analyze them assuming the NAF as input. The analyses will
show in which cases the methods should be based on the ordinary binary
expansion and when they should be based on the NAF. This decision will
depend on the ratio of the three operations addition, doubling and inversion.
Especially if inversions are free or substantially cheaper than multiplications
and squarings — as in the situation of elliptic curve arithmetic — the NAF
leads to a substantially improved performance.

111
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4.1 The NAF and the binary method

The analysis of the binary method based on the NAF instead of on the
ordinary binary expansion introduces the possibilities of this special repre-
sentation. Although the binary method has been shown to be inferior to the
m-ary method (because it is a special case of the m-ary method), analyz-
ing the NAF based binary method has a justification beyond the purpose
of serving as an easy example. There are still applications where memory
is limited (like FPGAs), which may suggest not to use an exponentiation
algorithm that needs precomputation. In these cases, the binary method
will still be the method of choice.

Because the operational costs of this method depends mainly on the Ham-
ming weight of the input, the weight reductions proved in the last section
take full effect. Recall algorithm 2.6, which is enhanced here to deal with
the digit 1, that indicates the need to compute 2~

Algorithm 4.1 (NAF based binary method, left to right)
IHPUt: $,(6)NA}' = (eANA]:(e)—la Canar(e)—25- - an): e>0
Output: z°

01 Pre-compute x~!

02 Set A :=x # e > 0 ensures the most significant bit to be 1
03 for i from Apnqr(e) — 2 downto 0 do

04  Set A:=A?

05 if eg==1then A:=A-x

06 elseif e ==1then A:=A -x1

07 return A

4.1.1 Cost analysis

Following the analysis of the traditional binary method (see section 2.2), the
operational costs can easily be determined. The following three lemmas will
state the results about the three arithmetical operations involved.

Lemma 4.2 (exact and average number of squarings)
For the NAF-based binary method, the measure Q(2) indicating the number
of squarings takes the following values if the input number e is i.i.d.:

squarings

exact number Q(2) = Iar(e) —1

worst case number Q(2) = Az(e)

average number Q(2) = = Xo(e) — %

Brauer addition-subtraction chains



4.1: THE NAF AND THE BINARY METHOD 113

Proof:

The exact number is easily determined from the algorithm. The main
loop requires one squaring for each round and the for-loop requires
Anvar(e) — 1 many rounds.

The worst case number of squarings shows up for an input with the
longest possible NAF. As it is the objective to formulate these cases
in comparison to the traditional binary method, this happens if the
NAF of e takes one digit more than the binary expansion of e, hence
in the case where Aur(e) —1 = Ag(e) +1 — 1. Corollary 3.16 showed
that Aar(e) € { Aa(e), Ae(e) +1 }.

The average case number of squarings can be determined using theo-
rem 3.19, formula (3.19), which states that the average length of the
NAF of a random integer e is Az(e) + 2 for Ayr(e) big enough, and
therefore Anzar(e) — 1 = Aa(e) — 5. O

The lemma shows that the NAF-based binary method requires the same or
the same plus one number of squarings as the traditional binary method,
which requires A2(e) — 1 squarings (see table 2.2 on page 58). But while
there is this slight increase in squarings, the following lemma will show that
multiplications are reduced dramatically.

Lemma 4.3 (exact and average number of multiplications)
For the NAF-based binary method, the measure A indicating the number of
multiplications takes the following values if the input number e is i.i.d.:

multiplications
ezact number A = wvpaar(e) —1
worst case number A = [)‘ZT(e)J
average number A = %-Xo(e) — 1L

Proof:

The exact number of multiplications is the same as the number of
nonzero digits within the NAF, with the first digit being the initial-
ization value. Therefore, there are always vaur(e) — 1 many multipli-
cations.

This number contains no hidden doublings, as the accumulator is ini-
tialized with (z2)? (as the NAF starts with 10 unless it contains only
one digit), hence, a hidden doubling in lines 5 or 6 of algorithm 4.1
may only occur, if the accumulator becomes z or z~!. Both cases
cannot occur, as only multiplications with 2~ may reduce the current

power of z the accumulator contains, and those reduce the power by
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1. This means that if the accumulator represents a power of x greater
or equal to 4 (the initial value) before line 5, it is greater or equal to 3
after the multiplication (which therefore cannot be a hidden doubling).
After that, the accumulator is squared again, the power doubled, and
it again represents a power of x greater or equal to 4. Therefore, no
hidden doublings may occur.

The maximal Hamming weight of a NAF can be reached if every second
digit is nonzero. As the first digit is bound to be 1, a NAF with
maximal Hamming weight follows the pattern

1(0%) if Aar(e) is odd
(e) 1(0%)? plus another zero
NAF inserted anywhere right of if AMar(e) is even,

the most significant digit

with * denoting any nonzero digit and

_ Aar — 1
||

The claimed costs follow with the fact that in the worst case, Axur(e) =
A2(e) + 1. See example 3.10(2) for an example of such a worst case.

The average Hamming weight of the NAF (for a random e) has been
determined in theorem 3.22, which states that an expected % - Az (e)
digits are nonzero. Because the leading digit requires no addition (it
is the initial value), there is an expected number of 3 - Aur(e) — 1
multiplications on lines 5 and 6 of algorithm 4.1. Theorem 3.19 states
that the average value for Ayqx(e) is % + A2(e), hence

Bloar(e) =1) = 3+ (5+ () ~ 1
1 7
= §.>\2(e)_§

O

Recall that the traditional binary method requires A9(e) — 1 multiplications
in the worst case and 3 - (A2(e) — 1) multiplications in the average case
(according to table 2.2 on page 58). It can be seen that the worst case of
the NAF-based binary method is about the same as the former average case,
while the new average case requires 33% less the number of multiplications
expected with the traditional binary method. If the inversion doesn’t level
out this advantage, the NAF-based binary method will be much faster.
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Lemma 4.4 (exact and average number of inversions)
For the NAF-based binary method, the measure I indicating the number of
inversions takes the following values if the input number e is i.i.d.:

inversions
exact number I = 1
worst case number I = 1
average number I = 1

Proof:

The algorithm always computes ' once in the beginning as a pre-

computation step independently from the input. There are no other
inversions necessary (if z 7! is requested within the loop, the precom-
puted value is assumed to be present through a table lookup). O

One could be led to think of a possible improvement of the costs of inversions
by noting that there are a number of inputs that do not contain the digit
1 and, hence, do not need the computation of z=!'. The number of these
inputs can be easily determined as sé" (n — 2), as the leading digit is bound
to be 1, requiring the second one to be 0, which may be followed be any
unsigned binary digit string with at most n—2 digits, which has been defined
as sj (n — 2).

Algorithm 4.1 could now replace the mandatory computation of ! in line
1 by a scan through the NAF and a computation of z~! if and only if the
digit 1 appears. As the implementation would surely realize the availabil-
ity of the value of z=! through table lookup, it is no problem to include
that precomputation step in the main loop, computing z—! when it is first
requested. In this way, the scan through the NAF would require no ad-
ditional costs. Additionally, as the analyses within this thesis only count
arithmetical operations, the scan would be negligible anyway.

Although this feature of an input sensitive computation of z ! could be
implemented with very little additional costs, it is not feasible to include
it in the analyzed algorithm, because for practical applications the gain is
diminishingly small. As the number of inputs without the digit 1 is s5 (n—2),
which has been shown to be equal to the n-th Fibonacci-number F), in
theorem 3.20, the ratio between these numbers, where the inversion could
be saved, and the number of all possible inputs with exactly n digits, which
is s2(n —2) (due to the fact that they start with 10 followed by any NAF of
at most n — 2 digits), tends towards 0 very quickly:

Corollary 4.5 (ratio between sj (n — 2) and sa(n — 2))
The number of NAFs without the digit 1 is a diminishing part of the number
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of all possible NAFs with at most n digits:

3;—(”) _ Frio
s9(n) s2(n)

s () ()

2 2

s2(n) VB 2R (1)
1-v3 n+2
< 3| (0.80902)"** (—4 )
- V5 on+2 + 1 1+ ot
— 0

as the first fraction clearly tends towards 0 and the second one’s nu-
merator is ~ (—1)"*2 . (0.309)"1+2. o

For the lengths of NAFs used in practical applications, such as n = 512
(RSA), the average saving is less than 10~*" of one inversion. Due to this
reason, the input sensitive inversion is not analyzed.

Combining the three lemmas above, the analysis of the NAF-based binary
method yields the following results:

Theorem 4.6 (analysis of the NAF-based binary method)
The NAF-based binary method performed on a random input number e € N
requires the following costs:

measure | exact costs | average costs | worst case costs
for Aa(e) big enough

1 1 1 )
Q8 | dar@ =11 dole) = Xo(e)
A vaar(e) — 1 % - Ao(e) — % [ )\22(6) J

Proof:

The results have been shown in lemma 4.2, lemma 4.3 and lemma 4.4.
O

With these costs known, the NAF-based binary method can be compared
to the traditional binary method. This thesis examines only the number of
operations in the underlying field of the exponentiation problem, therefore
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the creation of the NAF is not regarded, the NAF is assumed to be given
on input. In spite of this restriction, the comparison of the two methods
is not trivial, because the main difference is in substituting a number of
multiplications by an inversion. To be able to analyze this substitution, the
costs of the operations have to be regarded. Because they differ depending
on the underlying field, a comparison must depend on them.

If the cost measure functions are known, it is possible to give a cost com-
parison, which can be the basis for a fast algorithm that chooses whether
to apply the NAF-based binary method or the traditional binary method.
This will be done together with Brauer’s method, which will be examined
first in the next section.

4.2 The NAF and Brauer’s approach

The m-ary method may as well be based upon the NAF instead of on the
traditional binary expansion. A general m-adic representation is not com-
mon in practical applications, because the binary or 2¥-ary representation
is natural to computers. As powers of 2 are used as bases, this method will,
similar to section 2.3.5, be referenced as the NAF-based Brauer method.
As a first step, the NAF is partitioned into windows, which are all of length
d digits, for some input value d € N5 . As practical applications may either
use the optimal value determined in section 2.3.6 or the computer word size,
which only means that the computer has to interpret several successive digits
as one number, the partitioning does not require substantial time and as the
analyses within this thesis only regard arithmetical costs, the partitioning
step will not be included within the algorithm. Instead, the prepartitioned
NAF will be assumed to be present and it will be referred to according to
the following definition.

Definition and theorem 4.7 (d-digit partitioned NAF: d-NAF)
Given the NAF

(e)nar = (exyur(e)—15 Ernar(e)-25 -+ 5 €1, €0)

of a given integer e € N and an integer d € N5, the d-NAF is defined as
the d-digit partitioned NAF, where from the rightmost digit to the leftmost
digit every d digits are combined into one window. The leftmost window
may include less than d digits. Fach window can be interpreted as a signed
24_ary digit:

(@)a-nar = (Ex,_yur(e)—1s Prg_pur(e)=25 - s B1, Eo)
Where

E;, = (e(i+1)-d717 €(i+1)-d—25 -+ + » Ci-d+1; ei.d) for0<i< )\d__/\/_Aj:(e) —1
= (exyur(e)—1> Crnar(e)—21- - - » Cird+15€i-d) for i = Ag_nar(e) — 1.
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dsurle) = |2 (4.1)
length(Ey, ., r(e)-1) = Aauar(e) rem d (4.2)

Proof:

Division with remainder of Anar(e) by d gives Aar(e) = k-d+r
for some k,r € N, r < d. Hence, there are k windows with exactly d
digits and one window with only r digits. If r = 0, it is Ag_auur(€) =
’\NAlf(e) = [ANAf(e)'| and if 0 < r < d, there are \y_pur(e) = k+1=
[/\NAdf(e)

| windows, proving the first claimed property. As rem is the
operation returning the remainder r, the second claimed property is
also proven. O

Example:
Given a NAF
(€)aur = 10010100101010000101,

the 2-NAF is

(€)2_auar = 10 01 01 00 10 10 10 00 01 O1.

The following algorithm enhances algorithm 2.7 to deal with the NAF as
input.

Algorithm 4.8 (exponentiation, Brauer-method with NAF)
Input: 7, (€)a—nur = (Ex,_yur(e)-15 Brgpnar(e)—25 - - - Eo), € > 0, win-
dow length d € N
Output: z°

01 Pre-compute all needed digits.

02 Set A := xe-nar©-!

03 for i from Ay _auur(e) — 2 downto 0 do
04  Set A:= A%

05 if E; # 0 then A := A-xFi

06 return A

Cost analysis

The analysis of the operational costs of this algorithm will be presented in
two parts: the analysis of the precomputation and the analysis of the costs
in the main part of the algorithm.
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4.2.1 Analysis of the precomputation

The traditional Brauer method gains superiority over the binary method by
performing precomputation steps in order to save steps within the main loop.
This concept is also the basic concept of the NAF-based Brauer method.
Here, different values may appear as window values, because now also neg-
ative values are possible. An optimal algorithm may only compute those
window values which appear as windows within the partitioned NAF. But
as the probability that some windows won’t be needed decreases rapidly
with larger NAFs (and practical applications use large NAFs of 128 - 4096
binary digits), the extended overhead of an input sensitive precomputation
is not justified. Hence, all possible values should be computed.

The first task is to examine how that can be done. Differently from the
traditional Brauer method, where all possible window values may be com-
puted by successive multiplication with z, the special structure of the NAF
windows, which are themselves sparse binary strings, requires a more spe-
cialized approach. The next algorithm will present an approach to compute
and store all these values. This can be done using a ternary tree structure,
where the three possible branches are used for the three possible digits 1, 0
and 1. The window values are stored within the tree in the manner depicted
in figure 4.1.

root

e

1 void 1

0 0
1 0 1 1 0 1
| | | |
O 1 0 1 0 0O 1 0 1 0
/ANTANTA AN TN
170101010101 10101010101

Figure 4.1: The first 5 levels of the NAF-tree computation

Martin Otto 2001, Diplomarbeit



120 4. EXPONENTIATION USING THE NAF

All possible window values have a sparse signed binary representation using
at most d digits, leading zeros being acceptable. The tree stores all possible
sparse signed binary strings with exact lengths from 1 to d, which start with
a nonzero digit. Hence, windows with leading zeros have their values stored
at the end of the path from the root to a knot determined by their digit
sequence starting at the leftmost nonzero digit. For example, the value of
001101 can be found at the last knot of the path 1101 from the root.
Using this approach, no unneeded intermediate values are computed, every
computed value gives a new possible window value. This is not true for all
addition-subtraction algorithms, for example the sliding window algorithms
need to precompute z? in order to precompute all possible window values
efficiently, although z? never appears as a window value. They precompute
all odd window values, but need z2 to skip the even numbers between them
(see section 1.2.3).

Of course, the knowledge about the set of all possible NAF strings from
theorem 3.18(3) could also lead to the precomputation of all these values
without regarding representation. But then every time a value needs to be
looked up, the NAF of the value must be computed.

During the analysis of the precomputation steps of the traditional Brauer
method in section 2.3.1, it has been shown that there are different ways
to perform the precomputation, especially by exchanging different kinds of
operations, e.g. z* = (22)2 = (23) - x. The same possibility arises with the
NAF-based Brauer approach, where the inversion plays the major role.
One of the two different ways to build up the tree depicted in figure 4.1 is
to compute z7! and then compute level after level by first squaring (and
producing the child with digit 0) and then, if the current digit is zero,
multiplying the produced 0-knot with = and z ™!, hence producing the other
two childs 1 and 1. On the other hand, if the first digit is 1, one could
create only half the tree (starting with 1) and produce the other half by
inverting the corresponding knot’s value on the first half. Both approaches
have different costs and the cost of the inversion is crucial to the decision
about which algorithm to use.

To give exact results about the precomputation, the task to be performed
is defined within the next definition:

Definition 4.9 (precomputation AS chain 5(n))

In the precomputation step, all values between —(n —1) and n —1 for some
mazimal value n € N have to be precomputed in one addition-subtraction
chain. The window values z* for —m < k < n are then computed according
to that addition-subtraction chain.

Let

L(n) = {x(-(n-1),...,-1,0,1,...,(n—1)) }

denote the set of all possible addition-subtraction chains, that compute all
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values between —(n — 1) and n — 1. Elements from T'(n) will usually be
denoted as y(n).

Analogously to definition 2.10, let Ay, denote the number of additions, let
Q5(n)(q) denote the number of q-steps and let I5(n) denote the number of
inversions in an addition-subtraction chain ¥(n) € I'(n) and let

c(y(n)) = Q) - Qsm)(@) + c(4) - Ay + (1) - Iy

denote the costs of the addition-subtraction chain y(n) € T'(n).
For the precomputation of the NAF-based Brauer method, all values from
the ternary tree in the above described algorithm must be computed. For

A(d) :== % : <2d+1 + Pl)d#) : (4.3)

L (7(d) + 1) is the set of all addition-subtraction chains that performs the
precomputation step of the NAF-based Brauer method according to the de-
scribed algorithm, because the set of all sparse signed binary digit strings
with at most d digits has been defined as No(d) and it has been shown to be
No(d) = {—n(d),...,n(d)} (see theorem 3.18(3)).

The following lemma will now analyze the two most important ways to
compute a y(fi(d) + 1) € I'(7(d) + 1) using mainly additions and doublings
and either only one inversion or 50% inversions.

Lemma 4.10 (cost analysis: NAF-based Brauer precomputation)

1. choosing minimal inversions:
The NAF-based Brauer precomputation can be done with the following
costs, e.g. there exists an addition-subtraction chain ¥,(n(d) + 1) €
T(a(d) + 1) such that

Liaa+ny = 1
0 d=1
Goan® = {0y Trdsl
- % (2 4 (-1)?) -1 (4.5)
Ay (a@y+1) = 2+ (s2(d—2)—1) (4.6)
2 .
= (2d+ (—1)4 1) —9 (4.7)

2. choosing maximal inversions:
The NAF-based Brauer precomputation can be done with the following
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costs, e.g. there exists an addition-subtraction chain ¥o(f(d) +1) €
I'(a(d) + 1) such that

1 —1)HY 1
@+ = 3° (2d+1 + %) ~3 (4.8)
1 1
= 5 s2(d) — 2 (4.9)
0 d=1
Qi@+ (2) = { L (sy(d— 1) — 1) ;Z: i>1 (410
N o 1
= < (24 + (-1)7) - > (4.11)
Asya@+1y = s2(d—2)—1 (4.12)
_ é (2d n (_1)d*1) 1 (4.13)

Proof:
proof of part 1

As the described algorithm is an algorithm constructing addition chains,
the chain constructed by the first version of the algorithm proves the
first claim if it shows the claimed costs. In this version of the algo-
rithm, it is obvious that only one inversion is needed, because only
2z~ ! must be computed and stored, no other inversion operation takes

place as long as ™! is still known.

To prove the other formulas, formula (4.4) is shown using induction
over the number of digits. The other formulas will follow. Note that
the formulas are derived from the formulas shown to be true in theorem
3.18 with respect to the fact that the values for z°, ' and z~=' don’t
have to be computed using squarings or multiplications (or doublings
and additions respectively).

start of induction over the digit length d

Figure 4.1 shows the first five levels of the tree that is computed in
algorithm 4.11. Every zero is created by squaring the value of the par-
ent knot, every nonzero digit is created by multiplying the neighboring
zero value with z or z~! respectively. By counting all zeros up to tree
level d, the value of @, (a(4)+1)(2) can be found. We have

Q1) = 0
Q@+ = 2
= s5(1)—1=2-2—-1-1=2

with formula (3.8) stating that s,(1) = 2¢ — 1.
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assumption

Assume formula (4.4) to be true for all 1 < k < d. Then it can also
be shown to be true for £ = d + 1.

inductive proof for k =d +1

The number of squarings needed to construct the tree up to level d+1 is
equal to the number of squarings needed up to level d plus the number
of squarings that are needed within the (d + 1)st level. The first value
is known from the assumption, the latter can be found by noting that
due to the construction of the tree, every sparse signed binary digit
string with exactly d digits is the basis for a sparse signed binary digit
string with exactly d + 1 digits ending in zero. This can be done by
simply adding a 0 to the representation, which equals the doubling
of the value in the addition-subtraction chain or the squaring of the
value in the exponentiation algorithm. As the number of leaves in a
tree with depth d is equal to the number of sparse signed binary digit
strings which need exactly d digits, it can be computed by subtracting
s2(d—1), the total number of sparse signed binary digit strings with at
most d — 1 digits from sy(d), the total number of sparse signed binary
digit strings with at most d digits. Therefore, the following formula
leads to the proof:

Q3 (ad+1)+1)(2) = Qs (a(a)+1)(2) + s2(d) — s2(d — 1)
= SQ(d—l)—1+32(d)_32(d—1)
= Sg(d) —1

The other formula can now easily be derived. Using the equation
(3.10) from theorem 3.18 for so(d),

Q"y1(ﬁ(d)+1)(2) = sp(d—1)—1

L)

which proves formula (4.5).

The formulas for A5 (n(4)41) are derived noting that it is the same as
the number on nonzero knots within the ternary tree up to level d,
without the knots corresponsing to z and 1. As the tree is created,
every zero up to level d — 1 leads to the creation of two nonzero knots
in the next level. Hence, the searched value is

*Qxy(a(d-1)14) (2)
(s2(d—2) - 1)

(20 () -2,

Ay, (a(d)+1)

@

—_

=S
wlin N N
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1

|
A

proving formulas (4.6) and (4.7). Note that this number cannot con-
tain hidden doublings, as every step creates a new element (see section
1.1.1).

oO—|

01

Figure 4.2: The first 5 levels of the pruned NAF-tree computation

proof of part 2:

As the ternary tree is completely symmetrical, pruning one of the
two major branches will result in exactly half of the costs for both
squarings and multiplications (see figure 4.2). Therefore, formulas
(4.10), (4.11), (4.12) and (4.13) are derived by simply dividing the
corresponding formulas of part 1 by 2.

For the claimed result for I,(43(q)+1), all values on the right side of
the tree depicted in figure 4.2 are computed using inverses of the cor-
responding values of the left side. The corresponding value can be
found by following the path of the negated digit sequence, which is
the additive inverse of the right hand side digit sequence. As the value
for z is not computed using any operation, the value of z~! must be
computed explicitly, for it is needed for the creation of the left hand
side. All other right hand side values can be counted by adding the
number of multiplications and squarings needed to build up the left
hand side. The result gives the total number of inversions. Therefore,
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we have
Laa@+y = 1+ Qua@+1)(2) + Ay

. 1+% (241 + (- 1)d)—1+:1)) (27 + (-1 1) -1

_ 1_|_% <2d_|_2d+( )¢+ 2(1) )_%_1

_ 1+%.(2d+1+ ( )d+1_;2 ( 1)d+1>_g

_1yd+1
_ %.<2d+1+( 1) )_%
(proving formula (4.8))
Ny
(340 % - 89(d) — %

(proving formula (4.9))
O

Note that the costs of the precomputation step do not depend on the input,
therefore, these values apply for the exact analysis, the average and the
worst case. Both approaches can easily be implemented as the following two
algorithms show.

The algorithms are noted in a C++-like manner, assuming an abstract data
structure that implements the ternary tree as an object containing nodes
with the member value that stores the value of the knot. void is used to
denote an unused branch (like the keyword NULL in C++). If a value is
set, the creation of the corresponding data object is assumed, unset knots
are assumed to be void. The left branch is used to care for a leading 1, the
right branch handles the leading 1 and the middle branch handles the 0.
Algorithm 4.11 implements the first part of lemma 4.10, algorithm 4.12
implements the second part of lemma 4.10.

Algorithm 4.11 (NAF-Brauer precomputation, few inversions)
Input: z, window width d

Output: T, a tree containing all precomputed window values for windows
with length d

01 Initialize the ternary tree structure T
02 Compute and store x~!

03 Set T.left.value := x~!

04 Set T.middle := void

05 Set T.right.value := x
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06 Forifrom 2 tod do
07 For all leaves L of the tree T do
08 Set L.middle.value := (L.value)?
09 If (L.value == 0) then
10 Set L.left.value := L.middle.value - x~!
11 Set L.right.value := L.middle.value - x
12 return T

Algorithm 4.12 (NAF-Brauer precomputation, many inversions)

Input: =z, window width d

Output: T, a tree containing all precomputed window values for windows

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

with length d

Initialize the ternary tree structure T
Compute and store x !
Set T.left.value := x~!
Set T.middle := void
Set T.right.value := x
For i from 2 to d do
For all leaves L on the left hand side of the tree T do
Set L.middle.value := (L.value)?
If (L.value == 0) then
Set L.left.value := L.middle.value - x~
Set L.right.value := L.middle.value - x
For all leaves L on the right hand side of the tree T do
Set L’ := corresponding knot on the left side of the tree
Set L.middle.value := inverse(L’.middle.value)
If (L.value == 0) then
Set L.left.value := inverse(L’.left.value)
Set L.right.value := inverse(L'.right.value)
return T

1

The two different approaches to perform the precomputation presented here
introduce upper bounds on the arithmetical operations. The total number
of operations is fixed and it cannot be reduced, as every operation creates a
new window value.

The decision whether to choose algorithm 4.11 or algorithm 4.12 will de-
pend on the individual costs of the arithmetical operations. Beforehand,
the analysis of the main part of the NAF-based Brauer method is still to be
presented.

Brauer addition-subtraction chains



4.2: THE NAF AND BRAUER’S APPROACH 127

4.2.2 Analysis of the main part

Similarly to the binary method, the arithmetical costs will be presented for
each operation in the following three lemmas:

Lemma 4.13 (exact and average number of squarings)
For the NAF-based Brauer method, the measure Q(2) indicating the number
of squarings takes the following values if the input number e is i.i.d.:

T
%]

] ey g -

squarings

exact number Q(2) = d- (Ag—aur(e)

worst case number Q(2) = d- (Ag_arar(e) — 1)

average number Q(2) =

wis

Proof:

The total number of exponentiations to a 2¢th power in line 4 of al-
gorithm 4.8 is Ag_aar(€) — 1. As every one of these exponentiations
requires d squarings (which is optimal, because 2¢ is a power of two,
where the binary method is optimal), the exact number of squarings
necessary is d - A\g_aar(€) — d. Formula (4.1) traces A\g_aur(e) back
to Aar(e) and therefore

Q2 ¥ 4. PN%(‘”W —d.

The above formula for the exact case also applies to the worst case,
where it may be assumed that for the input e, we have Ayr(e) =
A2(€e) + 1, which gives the following number of squarings:

Q2) = d.[L‘)ﬁl-‘ d=d- {’\ch)J (4.14)

To show this equality, consider the division with remainder \y(e) =
k-d+r,0 < r < d. The right hand side of formula (4.14) always
evaluates to d - k, as the lower Gaussian brackets always result in the
highest integer below or equal to the fraction, which is always k. For
the left hand side, the additional 1 has the same effect as if 0 < r < d
was given, which causes the upper Gaussian brackets to result in £+ 1
always, as this is the lowest integer above or equal to the fraction.

In the average case, the value of Ag_aur(e) takes the same value as
Agd(e), if d doesn’t divide Ag(e) and hence the leftmost window does
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not contains d digits. Any possible increase in length has no effect on
the number of windows.

However, if A2(e) is a multiple of d, the number of squarings is different.
As the NAF may require an additional digit, and the leftmost window
already contains d digits, a new window might be created. In this case,
the former leftmost window can no longer be used for initialization of
the accumulator, but has to be handled as an ordinary window, hence,
it requires d more squarings. The probability of the NAF requiring an
additional digit has been determined in theorem 3.19. It states that
this happens in
2 (=1)%0 43 2

3 3.2%0(@-1 3
of all cases. The limit may be taken for the formula as the correction
term tends to zero exponentially. As the expected additional % -d
squarings only have to be added in the case where d divides Az(e), the
following factor is used. It evaluates to 1 iff A2(e) is a multiple of d
and to zero otherwise:

(=157 [0)

With this factor, the following formula corrects the expected number
of squarings if d divides Ay (e) and leaves it to the usual case otherwise:

o (P - ][22 3
PR
L[] e ] 2
L [

Recall that the average number of squarings for the traditional Brauer
method (see results in table 2.7) was

o = a.[M9] 4

This reveals that the additional digit the NAF may have compared to the
binary expansion might increase the number of squarings needed by d. This
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is the case whenever Ao (e) is divisible by d and hence the leftmost window of
the traditional partitioning has d digits. If this is not the case, the number
of squarings is equal to the number of the traditional Brauer method. This
means that for applications with numbers of a certain length, the choice of
the right method may vary not only depending on the operational costs but
also on the binary length of the inputs (see example 4.21(1)).

The fact that the number of squarings is mostly the same for both Brauer
methods is not surprising, as the number of squarings is not likely reduced
by any addition-subtraction chain method. The main sources for savings
are the precomputation and the multiplications.

Lemma 4.14 (exact and average number of multiplications)
For the NAF-based Brauer method, the measure A indicating the number of
multiplications takes the following values if the input number e is i.i.d.:

multiplications
exact number A = vg_pnuar(e) —1
worst case number A = Aji_nar(e) —1 = [AzT(e)J
d_5
average case number A = - PzT(e)-| +(2- ﬁ) . [A2(3)+1-| — 22d3

The average number of zero windows is about 33% higher than with the tra-
ditional Brauer method. This generalizes the results from the binary method
(theorem 3.22).

Proof:

Line 5 of algorithm 4.8 accounts for one multiplication whenever a
window value is nonzero. Hence the Hamming weight of the d-NAF
without the leftmost initializing window determines the number of
multiplications. As the main step references elements prior created
in the precomputation, the proof that no hidden doublings are mis-
counted as additions will be given in theorem 4.16, when the addition-
subtraction chains for precomputation and main exponentiation step
are combined.

In the worst case, the Hamming-weight will be as high as the number
of windows, hence Ay aar(e) — 1 multiplications. As formula (4.1)

states that \ ©
NarF(e
Ad—./\f.A.'F(e) = ’V%-‘ 3

and in the worst case, Aaar(e) = Az2(e)+1, the claimed formula follows

with
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Note that Aar(e) € {X2(e), A2(e) + 1} according to theorem 3.16.

In the average case, it is feasible to determine the average number of
zero windows in the d-NAF and subtract that from the overall number
of windows in order to get the average number of nonzero windows,
which indicates the number of multiplications.

Let W; denote the i-th window in the d-digit partitioned binary ex-
pansion of the input exponent e (Brauer partition) and let W/ denote
the same window after the binary expansion has been transformed into
the NAF. As the d-NAF is partitioned just like the binary expansion,
W/ denotes the i-th window in the NAF. Note that the NAF may
have an additional digit and therefore also an additional window. It
is the purpose to give results comparable to those of the traditional
Brauer method, hence, the number of multiplications will be counted
by determining how the number of zero windows changes during the
transformation into the NAF. This poses the task to compute the
probabilities

Prob(Val(W}) =0) = Prob(Val(W})=0|Val(W;) =0) (4.15)
+ Prob(Val(W}) =0 |1 < Val(W;) < 2¢—2)
+ Prob(Val(W}) =0 | Val(W;) = 2% — 1)

for all windows W] in the NAF.

That task will be carried out in three steps: First, the general case

will be examined, then the two special cases W and W} J(e)—1 will be
2

analyzed. The combined result will give the claimed formula.

For any window W;, T; denotes the tail of that specific window, hence,

as Wi = (e(i41)-d—1,---»€id), Ti = (€ia—1,-.-,€0).- The length of the

tail of window W; will be denoted as t; := #T;.

case 1: the general case
Let W/ with 1 <4 < A\y(e) — 1 be any inner window of the d-NAF.

7
Then the three probabilities from formula (4.15) can be determined as

follows:
case 1.1 : Prob(Val(W/) =0 | Val(W;) = 0)

The tail T; of W; may take any of the 2% values {0,1,...,2% — 1}.
From theorem 3.18, formula (3.12) on page 94, it is known that only
the values up to (and including)

3) 1 —1)titt —3
A(ts) (43) 5 (2ti+1+( )2 )

may be displayed with their NAF using the same space, the other val-
ues between 7(t;) + 1 and 2% — 1 require an additional digit, therefore,
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the NAF transformation of these tails propagates a carry bit into the
window W;. For the lower values, the transformation of T; into its
NAF has no effect on W;, hence, when W/ is created, it will also be-
come a zero window. Note that zero has to be included, hence, this

happens in

1, (oti+1 , (=143
alt)+1 §'(2++ 2 >+1
2ti B 2ti
2 (-1)ETL4+3
_ 2, )43
3 3. 2titl
t;—00 2

many of such cases, which gives the searched probability. Note that
this probability indicates the fraction of all possible tails not propa-
gating a carry bit.

case 1.2 : Prob(Val(W}) =0 | 1 < Val(W;) < 2¢ — 2)

This is an easy case as a window W; can never be changed into a zero
window with any of these values, no matter if the tail 7; propagates a
zero or not. It is Prob(Val(W!) =0 | 1 < Val(W;) < 2¢ —2) = 0.
case 1.3 : Prob(Val(W}) =0 | Val(W;) = 2¢ — 1)

In the case where W; only consists of ones, a propagated 1 will change
the window W; to zero, hence, W] will be zero, too. Additionally,
although the NAF-transformation of T; might not require an additional
digit, there is also a change to zero, if the leftmost digit of the NAF of
T; is one, giving a run of at least d + 1 adjacent ones. That leftmost
digit of the NAF of T; becomes 1, while the run of ones in W; is resolved
at a zero left of W;.

The first of the two described scenarios, where a carry bit is propa-
gated, may arise in about 1 — % = % of all occurrences of 2¢ — 1 as a
window value according to formula (4.16). The second described sce-
nario can be computed if the number of all possible NAF's with exactly
t; digits (leading one required) is known. As any such NAF must start
with 10 and may be followed by any NAF string of length t; — 2, we

have sa(t; — 2) many such tails. As this is a fraction of

s2(ti —2)  (3.10) T2+ (-Dh Y

2ti 2ti
1 (_1)ti_1 ti—0 1
= 3T 3w 0w
we have
, g 1 1 2
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of such windows W;.

Altogether, as the probability of a single window W; to be of any
certain value is 27%, we have

2 2
_ 4
S 324

Therefore, as the fraction is a fraction of the windows in the Brauer
partitioned binary expansion, this gives a total of

e (]9

many zero windows already.

case 2: the rightmost window

The rightmost window WJ is zero iff W; was, therefore, this case gives
a total of

1

2d
many additional zero windows.
case 3: the leftmost window

This last case is concerned with the leftmost window. It is usually not
a source for a multiplication, because it initializes the accumulator.
But in some seldom cases, the NAF has the right length to create an
additional new leftmost window, which requires the former leftmost
window to be handled as an ordinary window requiring a multiplica-
tion. This may only happen if A\y(e) is divided by the window width
d and the NAF requires an additional digit. For this case, it is easier
to determine the additional multiplications, which differs from cases 1
and 2, because here, mostly additional nonzero windows are created.
Similarly to the average number of squarings in lemma 4.13, the fol-
lowing factor will be used to make sure that the derived costs only
apply to those cases, where d divides \;(e), e.g. the following formula
evaluates to 1 if Ay(e) is a multiple of d and to 0 otherwise:

O A s B (i )

As d divides A\z(e), the leftmost window consists of d digits, with the
leftmost digit being 1. Therefore, the leftmost window has the 241
possible window values {10%71,... 19}, The number of those binary
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expansions with exactly Ay (e) digits, whose NAF requires an additional
digit has been defined to be s5 V' (\2(e) + 1), which evaluates to

2 (=143 2
3 3.2me '3

according to formula (3.19) on page 102. As the subtracted term
diminishes rapidly, the limit is used within the formula.

However, not all of those window values, that create an additional
leftmost window also cause an additional multiplication. In the case
where W)y, ()—1 = 2¢ — 1, the NAF transformation may either propa-
gate a carry bit or leave the tail with a leftmost 1. The same case has
already been studied in case 1.3 and the number of occurrences of this
scenario is according to formula (4.17)

1 4

Tgd-1 T 3.od

giving an additional number of multiplications of

2 4
37 3.2

Altogether, the claimed costs follow with the subtraction of the aver-
age number of zero windows found in case 1 and 2 from the overall
number of windows in the binary expansion (minus 1, as there’s still
one multiplication saved by initialization of the accumulator) and by
adding the correction term found in case 3. We have

- () - () -3
+ Goste) (2 2)

2¢ -5 AQ(e)W 2448

)

(es) ()
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- [)\256)} ' (2(12;% _§+ 3.42¢> + PQ(G;JHW ' (; B ﬁ)

4
L2y
3.2d 2d
e 3-2d—4—2-2d+4Jr 2 4 Ao(e) +1
N d 3.2d 3 3.2d d
1-3-2¢44
3.2d

—_

w

R Pigﬂ + (; - 3-42d) ' [/\Q(ec)zﬂw - 2(12;g

The average increase of the number of zero windows can be deter-
mined from above formula (4.18) by noting that the average fraction
of nonzero windows in the Brauer partition of the binary expansion
was (see table 2.7)

d_
T Oaale) — 1),

while the average fraction of nonzero windows in the d-NAF is about

2¢ — 2

St Oaale) - 1),
with the other terms left out, because their influence on the percentage
diminishes fast compared to this one. This shows that the d-NAF
has an expected 33% increase in zero windows. It also shows that
the overall fraction of zero windows diminishes fast with increase in
window length. O

Recall the result of the traditional Brauer method, which stated in table
2.7 the number of the multiplications in the main part to be (for m = 29)
%-(Ay (e)—1). This means that the number of multiplications in the NAF-
based Brauer method is slightly lower than with the binary expansion as a
base for Brauer’s approach. This result is not surprising, because although
the digits of the NAF tend to be better distributed over the length of the
chosen representation, the 33% weight reduction on average (see theorem
3.22) cannot be outweighed. On average, less multiplications and more zero
windows result. Example 4.21(2) will show this effect.

Lemma 4.15 (exact and average number of inversions)
For the NAF-based Brauer method, the measure I indicating the number of
inversions takes the following values if the input number e is i.i.d.:
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inversions
exact number I = 0
worst case number I = 0
average number I = 0
Proof:
In the main loop, no inversions occur whatsoever. O

Theorem 4.16 (analysis of the NAF-based Brauer method)
The NAF-based Brauer method performed on a random input number e € N
requires the following costs depending on the chosen precomputation:

overview: the NAF-based Brauer cost analysis

exact costs

1= Iy (a(d)+1)
Q) = Qriaiayny(2) +d- [ 2479 | —q

= As(a(d)+1) T Va—aar(e) — 1

worst case costs

I = Iy (a(d)+1)

Q(2) = Qsiaiaeny (@) +d- 2242
Aa(e
= Ax(ad)+1) + [ v )J

average costs (for d large enough)

= Iy (a(d)+1)
Q2 = Quaen@+4- 2] + 3. [2OH] g
e e d_5
A= A +i- |2+ G-k [29E] - 5

For the precomputation, there exist addition chains
5/17'72”731’74 € f‘(lﬁ’(d) + 1)7

such that the following costs for the precomputation may be used in the for-
mulas of the above overview. Note that 1 requires the minimal number of
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inversions, while 7o requires the mazimal number of inversions, 3 and ¥4
replace the mazimal number of squarings or additions respectively by inver-
si0MSs.

overview: important possible values for the precomputation

I5(a(a)+1) Q5(a(a)+1) A5(n(d)+1)

(A(d) +1) = 1 sp(d—1)—1  2-s5(d—2) —2

Y(d) +1) =% bosad)—h  Los(d-1) -} s(d-2)-1

N[

Y(A(d)+1) =73 45 s2(d—1) F-so(d—1)—5 2-s9(d—2)—2
Y(A(d) +1) =Y s2(d —2) sa(d—1) —1 so(d —2) -1
Proof:

The results have been shown in lemma 4.10, lemma 4.13, lemma 4.14
and lemma, 4.15.

By concatenating the addition chains for the precomputation step and
for the main step, no hidden doublings are created. While the precom-
putation step computes window values, no hidden doublings occur as
it has been shown in lemma 4.10. After that, in the main exponen-
tiation step, the exponentiation with 2% is assumed to be performed
by an optimal addition chain using only doublings, hence, only line 5
could miscount hidden doublings. Assume z ¢ {0,1} andd > 1 (d =1
has been proven in the NAF-based binary method’s analysis). The
multiplication in this line never adds the same element to itself, if the
accumulator is different from any possible window value. This can be
shown easily: First, the accumulator is initialized with the leftmost
window value, which is nonzero, e.g. A = z* with i > 1. After that,
in the first execution of the main loop, A is squared d times, giving a
value of A = 27 with j > 2¢. But in line 5, the possible window values
are powers z¥ of z with —2¢ + 1 < k < 2% — 1. Hence, in the first
execution of line 5, no hidden doubling occurs. Assuming the lower
bound for the exponent, w_2d+1, for the window value, it still leaves
A =z™ with m > 2% — 29+ 1 = 1. But as A is squared d times again
after that multiplication in the following execution of the loop, A = z"
with n > 2% again before executing the next multiplication of line 5.
Thus, the same situation as before occurs, which therefore proves the
claim inductively. O
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4.2.3 Experimental results

Tables 4.5 and 4.6 show the results of some experiments compared to the
results of the theorems in the last section. The experimental data has been
created using 10° sets of random binary expansions with a certain length,
where the leftmost digit has been set to 1 in order to assure that all inputs
have the same length. The binary expansion has been transformed into the
d-NAF and the numbers of zero and nonzero windows have been counted.
The hardware was a 733MHz PC with Intel architecture, the random bits
have been generated with the C++ rand() function as

e; := (int)(2.0 % ((double)rand()/(double)(RAND_MAX + 1))).

(Az(e), d) experimental Q(2) | Q(2) from lemma 4.13
main part only main part only
(20, 1) 19.6698 19.6666
( 67, 1) 66.6673 66.6666
(128, 2) 127.3290 127.3333
( 155, 2) 154.0000 154.0000
(192, 2) 191.3360 191.3333
( 256, 3) 255.0000 255.0000
(307, 3) 306.0000 306.0000
(419, 3) 417.0000 417.0000
(512, 3) 510.0000 510.0000
( 555, 3) 554.0060 554.0000
(1024, 4) 1022.6700 1022.6666
(2048, 5) 2045.0000 2045.0000
(4096, 5) 4096.0000 4095.0000
(8192, 6) 8190.0000 8190.0000

Table 4.5: Experimental and theoretical results for Q(2)

The experimental data follows the already proved formulas.

The results of the analysis in theorem 4.16 can now be used to determine
if and when the NAF-based Brauer method is better than the traditional
approach. This leads to a cost comparison suitable for every application
in the next section. There is no general result about which variant of the
Brauer method is superior. The reason for this fact can be seen in looking
at the analysis of the precomputation part. If inversions are expensive,
the traditional Brauer method is determined to be the method of choice.
If inversions are cheap, the savings in the precomputation step take full
effect. At first sight, there are more operations altogether, e.g. about % the
number of the traditional Brauer method as the total number of arithmetical
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(Ag(e), d) experimental A A from lemma 4.14
main part only main part only
(20, 1) 6.446 6.500
( 67, 1) 22.120 22.166
(128, 2) 42.448 42.416
( 155, 2) 51.444 51.416
(192, 2) 63.779 63.750
(256, 3) 70.855 70.875
(307, 3) 85.031 85.041
(419, 3) 115.839 115.875
(512, 3) 141.684 141.708
( 555, 3) 153.887 153.875
(1024, 4) 234.373 234.354
(2048, 5) 391.970 391.968
(4096, 5) 784.865 784.885
(8192, 6) 1336.55 1336.567

Table 4.6: Experimental and theoretical results for A

operations found in lemma 4.10 is for ¥(i(d) + 1) € { 31(A(d) +1),F2(7(d) +
1)}

(24 (-1 ) - 2

.9d

Lyi(ay+1) + Qya)+1) (2) + Asaay+1) =

~
~

W W]~

?

while the total number of operations of the traditional Brauer method, ac-
cording to lemma 2.11, sums up to

Qym)(2) + Aymy = 242,

for y(m) € {y1(m),y2(m)} of lemma 2.11.

But if inversions are very cheap, the costs will be lowered as half of the
additions and half of the squarings can be replaced using inversions. If
inversions are completely free, there are only about % of the operations of
the traditional precomputation, hence, a substantial saving.

The savings in the main part are not that impressive. In the contrary, while
there are slightly less multiplications, the number of squarings is slightly
increased. The ratio between the costs of both Brauer variants in the main
part is closer to 1, although, as the savings in multiplications scale with the
input length, while the slight increase in the squarings only scales with the
window length, the overall costs in the main part are reduced. The next
section will give examples to illustrate this behaviour.
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4.3 Cost comparisons

It has been mentioned many times within this thesis that different appli-
cations involve very different costs. Hence, the decision whether to use a
NAF-based method or a traditional method must depend on the actual im-
plementational costs of the application. It is assumed that the choice about
the method itself has been already made — the binary method should only be
considered if the implementation needs to be simple or there is only a very
limited amount of memory, otherwise the Brauer method should be used.
This is because the Brauer method can adapt to the input size by choosing
an optimal window length. The following two sections can then give an
answer to the question which number representation is most suitable. The
theorems presented can also be used to build hybrid algorithms, that can
decide (on average or for every input), which variant of the chosen method
to apply. In doing this, one can combine the advantages of both variants.

4.3.1 Cost comparison for the binary method

In the following, two theorems are presented. The first gives the cost com-
parison in the case, the input can be examined and knowledge about length
and configuration (especially Hamming weight) can be used for the compa-
rison. The costs of the underlying operations, squaring, multiplication and
inversion, must be provided in any case.

Theorem 4.17 (exact cost comparison for the binary method)

Let 1 = (z € G,e € N) be a given exponentiation problem with random but
fized values. Assume that Ao(e), Aar(e),ve(e) and vaar(e) are known, as
well as ¢(I),c(Q(2)) and c(A), the costs of the arithmetical operations for
the computation of x€.

Then the following inequality can be used to decide whether the traditional
binary method or the NAF-based binary method is faster to compute z€.

If
R = c(I) +c(Q(2) - (Anar(e) — Az(e)) + c(A) - (nar(e) —r2(e)) > 0
then the ordinary binary method is faster,

otherwise the NAF-based binary method is faster.

Proof:

The results of the analyses of both variants of the binary method are
subtracted. The results are stated in table 2.2 and in theorem 4.6. [

If the method should not be chosen depending on the actual input, but based
on general considerations, the cost comparison for the average case gives the
answer. Here, the Hamming weight of the input is no longer known. The
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binary length has to be known, hence the average application case should be
known (for example the RSA system, where a 512 bit integer is expected).

Theorem 4.18 (average cost comparison for the binary method)
Let n := Xo(e), ¢(I), ¢(Q(2)) and c(A) be declared as in theorem 4.17.
Then for n large enough, the following inequality can be used to decide
whether to use the traditional binary method or the NAF-based binary method
in order to compute x€.

If

R = (D) +c(Q(2)) - § —e(A) - 3”& 5

>0 (4.19)

then the traditional binary method is faster,
otherwise the NAF-based binary method should be preferred.

Proof:

The results of the analyses of both variants of the binary method are
subtracted. The total average costs of the traditional binary method
are (see table 2.2)

- (A2(e) = 1), (4.20)

N | —

c(Q(2)) - (Az(e) —1) +¢(4) -
the costs of the NAF-based binary method are (see theorem 4.6)

o(I) + c(Q(2)) - (AQ(e) _ %) +e(4) - (% Jole) — g) o 21)

Subtracting (4.20) from (4.21) leads to the stated claim:

olI) + Q) - (afe) — 5 — Mafe) +1)
Fe(A) - (% ale) — g _Rele) | %)
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Example:

(1)

Recall the stated implementation of the RSA cryptosystem (exam-
ple 2.4(1)), with costs of

c(4) =c(Q2)) =1

Assume, as in practical applications, that the modulo N has 512
bits, e.g. A2(N) = 512. Then the average binary cost comparison

leads to 1 . 169
n
R:=—— 94+ —=—+ —
R TR IR
which is positive for all n € {1,2,...,56}. Hence, in practical
applications, if the private or public key has more than 56 digits,
the NAF-based binary method is faster, otherwise the traditional

binary method is a good choice.
For the same application as in part (1), consider as input the stan-
dard example of chapter 1

(219); = 11011011 15(219) =6 A2(219) =8
(219)aar = 100100101 wpaqr(219) =4 Anar(219) =9

and suppose the exact cost comparison should be used. It is

R = o(I)+c(Q(2) - (Aur(e) — Aa(e)) + c(4) - (vaur(e) — va(e))
= logX(N)+1—-2=logA(N)—1

Therefore, for this input, the traditional method excels the NAF-
based binary method for any modulo N > 3.

Note that in the cost comparison for the average case, only the costs of the
addition scale with the length of the input. As this term is negative, the
NAF-based binary method will win in almost every situation.

4.3.2

Cost comparison for the Brauer method

For the Brauer method, the results from section 4.2 also allow to state two
inequalities, that can be used to determine which variation of the method
should be preferred. The following two theorems are, as in the last section,
cost comparisons for the exact case, when the input is known and infor-
mation about its pattern can be used, and for the average case, where not
every single input should be investigated, but the aim is to choose the best
method on average.
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Theorem 4.19 (exact cost comparison for the Brauer method)

Let 11 = (z € G,e € N) be a given exponentiation problem with random but
fized values. Assume that Ao(e), Aar(e), voa(e) and vg_aar(e) are known,
as well as ¢(I),c(Q(2)) and c(A), the costs of the arithmetical operations for
the computation of x°.

Then the following inequality can be used to decide whether the traditional
Brauer method or the NAF-based Brauer method is faster to compute €. Be-
cause the Brauer method offers different approaches for the precomputation,
the cost comparison consists of three steps, determining the best precom-
putation for both methods and then subtraction to get the cost comparison
inequality:

step 1:

For the precomputation of the traditional Brauer method, define

o { Q) +e(4) (29-3)  if e(4) <(Q(2))
L (c(Q(2)) + c(A4)) - (2d_1 — 1) otherwise,

hence, c¢1 denotes the minimal costs of any addition chain v performing the
precomputation of the traditional Brauer method.

step 2:
For the NAF-based Brauer method, define

{ (c(I) + c(A)) - (s2(d = 2) = 1) if c(I) < c(A)

2. ¢(A) - (s2(d —2) — 1) otherwise
and
o = { (e(D) + (@) - (3 s2d = 1) = 3) i el0) < e(Q(2)
c(Q(2)) - (s2(d — 1) — 1) otherwise,

hence, coq denotes the minimal costs of the construction of all elements, that
could be constructed by squarings and cop denotes the minimal costs of the
construction of all elements, that could be constructed by additions. Define
c2 as

co + =c(I)+ coq + cou,

then co denotes the minimal costs of any addition-subtraction chain 7 per-
forming the precomputation of the NAF-based Brauer method.
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step 3:
With the above costs c1 and co known, the exact cost comparison inequality

Jollows as:
B dq-a- ([Mer] - )

+ c(4) - (Va—nar(e) — vaa(e))
+ c—c

If R > 0, then the ordinary Brauer method is faster,
otherwise the NAF-based Brauer method is faster.

Proof:
step 1

In step 1, the two addition chains for precomputation for the tradi-
tional Brauer method introduced in formulas (2.1) and (2.2) account
for the operational costs. The costs have been shown in lemma 2.11.
They represent the two possible approaches for maximizing squarings
or multiplications.

step 2

In step 2, the results from lemma 4.10 are applied. The lemma shows
that while there is always at least one mandatory inversion, half of the
squarings and half of the multiplications can be replaced by inversions.
As there are so(d — 1) — 1 squarings for d > 1 and 2 - (so(d —2) — 1)
multiplications, half of both numbers can be counted as inversions, if
inversion is cheaper. Step 2 performs that replacement if applicable.
As the steps creating the elements can be mixed from both described
versions, there are addition chains with the claimed costs.

step 3

If the costs of the precomputations have been chosen optimal accord-
ing to the first two steps, they can be inserted for the total costs which
have been found in the analyses of the two variations of the Brauer
method. In corollary 2.15, the exact number of operations for the tra-
ditional method has been shown to be

e = ([22]-1) ¢+ @
A = (vpa(e) = 1) + Ayou,

for any addition chain v(2¢) € T'(24). If now the optimal addition
chain for the precomputation is chosen from I'(2¢), and operations are
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added with their individual costs, this result is
A
([#-‘ N 1) d-c(Q(2)) + (vga(e) — 1) - c(A) + 1.

For the NAF-based Brauer method, the exact results without the pre-
computation can be seen in theorem 4.16, where the following costs are
stated (operations with their costs and those of the precomputation
already summed up):

(4| 24)] ) - @) + Gasarte) = - cta) +

Subtracting the traditional Brauer version from the NAF-based Brauer
version leads to the claimed cost comparison inequality:

can (o) (4] ) 9

+c(A) - (va—aur(e) =1 —wpi(e) + 1) +ca — 1

_ so@)-d. ("/\NA;(G)-‘ B [Az(ge)-D

+c(A) - (Wg—rur(e) —vpa(e)) +c2 —c1.

O

For the Brauer method it is also possible to offer a cost comparison for the
average case, just like for the binary method. If not every input should
be examined, but the algorithm of choice should be better on average, the
following inequality helps to find the best choice for a given application.

Theorem 4.20 (average cost comparison for the Brauer method)
Let Xo(e), c¢(I),c(Q(2)) and c(A) be known and declared as in theorem 4.17.
Then for Xo(e) large enough, the following inequality can be used to de-
cide whether to use the traditional binary method or the NAF-based binary
method in order to compute z°.

step 1:

Perform step 1 of theorem 4.19 to get c;.

step 2:

Perform step 2 of theorem 4.19 to get cs.

step 3:

With c1 and co known, set

R

- (] (1 ) [ )

+ ¢(Q(2)) - %d. ([)‘2(6()i+1w — Pche)D N —
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If R > 0, then the ordinary Brauer method is faster,
otherwise the NAF-based Brauer method is faster.

Proof:
step 1 and step 2

The precomputation step is independent from the configuration of the
input, the same operations are carried out for every input. Therefore,
the same results as in theorem 4.19 apply. This can also be seen in
lemma 2.11 and lemma 4.10.

step 3

For step 3, recall the average case analysis of the traditional Brauer
method depicted in corollary 2.15, where the following costs have been
derived:

(@) (|52 = 1) a) + (@0 (2) (4.22)

e (5 (4] ) st

for any addition chain v(24) € T'(2%), while the lemmas 4.13, 4.14 and
4.15 show the average case analysis of the NAF-based Brauer method
to be:

c(Q(2) - (g Piﬁﬂ + %d- [%1 —d) (4.23)

e () Gste) [

+ c(3(n(d) + 1),

for any addition-subtraction chain ¥(7(d) + 1) € T'(f(d) + 1). If the
optimal chains for the precomputation are inserted, with costs known
from parts 1 and 2, subtracting formula (4.22) from (4.23) gives the
claimed result:

o (&[] 4 [ (2] ) 4
e (5[] (%) )5
B 2d2—;1 (Piﬁﬂ —1)) e —a
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= e (5 [P 5 )

+ o(A).- (2d—3.2d+3_[,\20(le)w +<g_ 4 )_[,\2(6)“}

3.2d 3 3.2

—2¢4 3 4241
+ +co—a1

2d

= e 5 (29 - [42])
o (2 [ (2 ) g

2
+ﬁ) + co—0¢

The cost comparison inequalities for the Brauer method can be used to find
the optimal variant of this method. The following examples give exemplary
results, which show that the costs of the operation is a crucial point for the
choice of the right method.

Example 4.21:

(1) Recall example 2.4(1) with costs of
c(4) =¢(Q(2)) =1 and c(I) = log(A2(N)).

for exponentiation in Zy. Let N consist of 512 binary digits, as it is
usual for the RSA cryptosystem. Assume that the Brauer method
should be based on the number representation that yields the best
results on average. Hence, the average cost comparison inequality
should be used. For the window width d, the optimal value of

d = round <% W (%W))

according to formula (2.5) (with ¢ = 1 because ¢(4) = ¢(Q(2)))
should be chosen. Then the three steps of the cost comparison
result to the following:

As ¢(A) = ¢(Q(2)), in step 1 the first version is chosen, leading to
costs of

o = 29-2
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In step 2, the cost of one inversion is ¢(I) = 9 and hence, more
expensive than a squaring or an addition. Step 2 results in:

Co = 9+2'(82(d—2)—1)+82(d—1)—1

W ) +6=3- (2974 (-)H) 46,

0

Altogether, this leads in step 3 to the following solution for R:
R 3 — 2d+1 . Ao(e) + 2 4 ' Ao(e) +1
3.2d d 3 3.2 d

+%+2§'(P2(2+1_PQc(le)DJr02_01

3—2d+1—d'2d+1 . )\2(6)
3-2d d

204 —4 4+ g 291 [)hg(e) +1
3.2d

2
+W+CQ—61

_3-2tld+ 1) (Pz(e)w ~ Pz(e) HD

3-2d d d

- 3.12d _ ([z\z(e;—l-l-‘ _2> A

which is greater than 0 for all values of Aa(e), as it can be seen in
figure 4.3, hence, for this ratio of the three basic operations, the
NAF-based Brauer method is inferior to the traditional method and
should not be used. Note that figure 4.3 depicts only one function,
R, the parallel lines are in fact one function, the points alternate
quickly between the two levels because of the use of the Gaussian

brackets, which lead to a jump in the number of squarings each time
A2(e) is divided by the window width d.

The three figures 4.4, 4.5 and 4.6 show the performance of the two
variants of the Brauer method for the ratio ¢(4) = ¢(Q(2)) = 1
chosen for this example. The blue line shows the lowest costs of the
traditional Brauer method for d chosen from table 2.10. The red
and the green line show the costs of the traditional Brauer method
for the two surrounding values for d. The graphs are lines, be-
cause no inversions occur for the traditional method. The dashed
lines depict the graphs of the corresponding NAF-based Brauer
methods. It can be seen that only for small values of ¢(I), e.g.

Martin Otto 2001, Diplomarbeit



148 4. EXPONENTIATION USING THE NAF

c(l) fixed, )\Z(e) variable
16 T

0 1 L 1 1 1
0 50 100 150 200 250 300

NG

Figure 4.3: Graph of the function R for example 4.21(1)

c(I) < ¢(A) = ¢(Q(2)), the NAF-based Brauer method is faster
than the traditional variant. The break at ¢(I) = 1 results from
the change of the precomputation, which always prefers the cheaper
operation, hence, right of ¢(I) = 1, only a single inversion occurs
using the NAF-based Brauer method. The graphs are depicted for
Ao(e) € {192,512,1024}. The graph for A2(e) = 1024 shows that for
large values of As(e), the savings in multiplications in the main part
of the algorithm (as explained in theorem 4.14) can be seen, because
here, the NAF-based Brauer method is superior also for some values

of ¢(I) > c(A) = ¢(Q(2)).
(2) Now recall example 2.4(3) with costs of

c(4) = 100
c(Q(2)) = 60
c(I) = 0

for the implementation of an elliptic curve cryptosystem using mixed
coordinates. Let the window width d be chosen as in example (1).
Then, as squarings are faster than additions, the precomputation of
the traditional Brauer method gives the following results in step 1:

o = 160-(2d—1—1)
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costs

costs

A(€) = 192
265 ‘
260 NAF-based, d=5 B
traditional, d=5
255} == i
NAF-based,d=3 - -~~~ -
250 R - traditional, d=3
p o7 traditional, d=4
245 4,/ // i
/
/
/
/ NAF-based, d=4
240 ) |
7
//
Vv
235 g
230 | | | | | | |
0 1 2 3 4 5 6 7 8
c()
Figure 4.4: Costs of Brauer method variants for A\y(e) = 192
A () =512
670 T T
NAF-based, d=6
660 |- g
traditional, d=6
650 - g
NAF-based,d=4 - -~ __-
640} e ]
femT T T traditional, d=5
/
/
/
6301 / green line: traditional, d=4 B
//NAF-based, d=5
/
/
620/ g
/
V
610 | | | | | | | |
0 1 2 3 4 5 6 7 8 9
c()
Figure 4.5: Costs of Brauer method variants for A\y(e) = 512
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A,(e) = 1024
1280 :

1270 traditional, d=4

1260 NAF-based, d=6

NAF-based, d=5 _

1250

traditional, d=5

1240

costs

1230,
red line: traditional, d=6

1220

1210

1200 I I I I I I I I I
0
c()

10

Figure 4.6: Costs of Brauer method variants for Ay(e) = 1024

In step 2, as inversions are free of costs, the maximum number of
inversions is chosen resulting in

C2 100(Sg(d—Q)—1)+30(Sg(d—l)—l)

And step 3 gives the average cost comparison inequality as

3 -2t T )g(e) 2 4 Ao(e) +1
= 100 - . Z_ .
w0 (e [0 o) [ )
200 Xo(e) +1 Ao (e)
b T) O ) I A I Bl S
b 40d ([ ) ] M
+ 100 - (SQ(d— 2) - 1) + 30- (32(d— 1) - 1)
— 160+ (241 - 1)
The graph of this equation is depicted in figure 4.7. It can be

seen, that for this example, the NAF-based Brauer method ex-
cels the traditional method even for very small inputs lengths. For
today’s choices of key length in elliptic curve cryptosystems, like
Ao(e) € {128,192,256}, the new method is definitely faster than the
traditional Brauer method.

Brauer addition-subtraction chains



4.4: A GENERALIZED AVERAGE CASE ANALYSIS 151

c(1) fixed, )\Z(e) variable
100 T

-100}- ) R
—-200 ‘.-___ -

a0l e T e N

-400 .

-500

-600 ! I I I I
0 50 100 150 200 250 300

Figure 4.7: Graph of the function R for example 4.21(2)

Note that the labeling of the axes in both presented graphs of R is somewhat
misleading. One might be tempted to judge by the values on the y-axis, that
in the first figure, the traditional method outweighs the new method only
slightly while in the second figure the savings are substantial. Of course
savings increase with input length, but the labeling only reflects the chosen
magnitudes of the cost measures, hence cost measures of 60 and 100 as from
example 2 will suggest greater superiority than the cost measures 1, 1, 9 in
the first example. The pictures can only show which method is superior and
how the ratio develops.

The examples once again show that not only the choice of the method, but
also the choice of the implementation and the environment of the exponen-
tiation problem, e.g. the costs of the basic operations, determine which
representation of the exponent e and, hence, which variant of the method is
superior.

4.4 A generalized average case analysis

For all results about the average or expected number of operations, the
definition of the average case from remark 2.5 has been used, stating results
about trials from the set €2, of all inputs of the same binary length. However,
in practical applications like cryptosystems, the average input is not always
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of a certain length, but of a certain maximal length, requiring sometimes
to examine results according to a more general definition of the average
case. This generalized average case will be defined in the following definition
and the task of this section will be to expand the known results about the
arithmetical costs of both variants of the Brauer method as well as the cost
comparison of the average results according to that generalized average case.

Definition 4.22 (generalized average case for variable length)

For the generalized average case, the average is taken as the average of all
inputs e € Q(n) := {0,1,...,2" — 1}, where the inputs are assumed to be
results of an independent identically distributed trial from the set Q(n). Note
that the set 2(n) contains 2™ elements e with Aa(e) < n for 0 <e < 2".
For each 2 < k < n, the set Q, = {e € Q(n) | Aa2(e) = k}, which has been
defined in remark 2.5, contains 281 elements from (2¥=1)y = (10¥~1) to
(28 — 1)y = (1¥). For k = 1, the set Q1 = {0,1} contains 2 elements. Note
that the sets Q1,Qa,...,Qy, form a disjoint decomposition of the set Q(n).
For the Brauer method, the window width d is assumed to be determined
once for the whole algorithm, hence, it is assumed not to depend on the
input (which would also be a possible implementation).

Lemma 4.23 (average length of the input’s binary expansion)
The average length of the binary expansions of inputs e € Q(n), e i.i.d., is

Proof:

As the Q, 1 < k < n, form a disjoint decomposition of Q(n), the
average length of inputs i.i.d. from Q(n) is

1 i 1 "
S T k-#Q = —- Ek-2k1 41
g k= g (L2 )

1 (1 —(n+1)-2"4n-2ntt N 1) (see [BSMM95],

2n (1—2)2 table 1.2(10), p. 16)
= 2% (242" (n—1)) (4.24)

1

O

The window width d can be chosen according to that number, for example,
the optimal value of d presented in section 2.3.6, could be chosen dependent
on n — 1 rather than dependent on n. However, it is also always possible
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to determine the window width dependent on the input length. For the
remainder of this chapter, the window value d will not be specified explicitly,
because in practice, the formulas presented in section 2.3.6 are not taken as
they are to determine the optimal window width, but the surrounding 2 or
4 values for d are also tried.

Using definition 4.22, the results from corollary 2.15 (for the traditional
Brauer method) and theorem 4.16 (for the NAF-based Brauer method) can
be extended to the new average case by taking the known average results for
each set 0, which is the average of all values within €y, if they are assumed
to be i.i.d., and adding them up with their specific weight, e.g. multiplied
with the fraction of the set Q from the set Q(n). The following theorems
state the derived results. But first, a lemma needed to prove the theorems
will be established.

Lemma 4.24 (weighted Gaussian bracket sums)
Forn,d €N, d <n, let k be uniquely defined by the division with remainder
n=k-d+r,0<r <d. Then the following equations hold:

n

3 <2i : [ﬂ) = (k+1)- 2+ — 2,12—_1 : (2’“"“‘1 - 1) (4.25)

=1

EHI(T'- [%D = (k+1)-2" + 2" [”jﬂ'll —2k;+jzl —1 (4.26)

=1

Proof:

first equation:

. (j ) (2j-d+1 _ 2(j—1)-d+1)) F(k+1)- (2n+1 _ 2k-d+1>
=1

(21 -2) -3 (j : (2d)j_1> (k1) - (241 — 2kt

J=1

S

—~
*
~

1_ (k + 1) .9k-d 4 I 9d-(k+1)
) d
B 2'(2 _1)' (1—24)2

+(k+1)- (204 = gkdn)
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= 2d2_1-(1—2k'd-(1+k—k-2d))

+ 2012_1-(2‘1—1)-(l~c+1)-(2n—2’€"i)

_ (k+1).2n+1+

2d_1.(1_2k-d_k_2k-d+k_2k-d+d

_k.okdtd _ok-dtd | okd 2k-d)

2
— (k 4 1) . 2n—|—1 _ ﬁ . (Qk-d-Fd _ 1)

The equality (%) can be found in some collections of values of finite
series, for example in [BSMM95], table 1.2(10), page 16. It is derived
from the differentiated finite geometric series.

second equation:

CHE SRS S CHE SRS S CH)

I
N | =
)=
7 N
&2
e
Ql =
- 1
N——
|
N | =
N
—
Ul
-1
+
ot
N
3
+
=
—
S
&+
ot
- 1

i=1
(425) 1 k. 1 2n+1 2 2k'd+d 1 1
a kD _2d—1'( _)
n n+1
1o [ ' }

1 2k-d+d_1
= (k_|_1).2”_|_2”.’7n+ -‘_

d 24 — 1
0

First, the generalized average case for the traditional Brauer method is for-
mulated.

Theorem 4.25 (generalized traditional Brauer average analysis)

The traditional Brauer method performed on a random input number e €
Q(n), e i.i.d., requires the following costs on average. Let y(2¢) € T'(2%)
be any addition chain suitable to compute all values for the precomputation
step (see definition 2.10). Assume that d is fized for all inputs and k be
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defined as k := L%J

d 2kd_1
2kd 1k

Proof:

As the costs of the precomputation do not depend on the definition of
the average case, as they do not depend on the inputs, they are not
changed. Hence, only the new costs of the main part of the traditional
Brauer method need to be shown. Note that for d € Ny, it is [ﬂ =1.
According to table 2.8 on page 67, the average costs for inputs e € ;,
e i.i.d., are

aw =i |5]-a

which gives the average costs for e € Q(n), e i.i.d., d fixed, as
1 = i
Q 2 - . (#Q. ‘ (d ‘ [_1 a d))

- (B D) fil) -

=1

[\

I
[\
S
+
—
[]=
N
Y
h— |
ol
—_—
N——
+
N
|
QL

i=1

(4.25) d nt1 2 k-d-+d d
2 -((k+1)-2 —ﬁ-@ —1) + 2 g

d-(2Fdtd—1) d.(2¢-1)

= ked- g (2i—1) o (21
d- (2k-d+d_2d) d 2k-d_1
= bd-mrmioy T Mt oy

The number of additions can also be derived using table 2.8. For
inputs e € i, e i.i.d., they have been found to be

=25 ()
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This leads to the generalized average case as

RSN ER)
e L))

oy (e []) s Bt
on+d . d on+d 2d

=1
o 2y (i [E]) - e )
- on+d+1 P d on+d
(4.25) 24 —1 +1 2 k-d+d
2 e (k2 —ﬁ-@ —1)
-1y (2 1)
- on+d
B PO it et B i)
- 2d on+d
E+1 2k:-d+d —9n _ 2d
= (k+1)- od on+d -1
_ ko2l
= ki

Now the generalized results for the NAF-based Brauer method can also be
formulated:

Theorem 4.26 (refined NAF-based Brauer average analysis)

The NAF-based Brauer method performed on a random input number e €
Q(n), e i.i.d., requires on average the following numbers of operations (note
that the number of operations in the precomputation step doesn’t change with
the new definition of the average case and can be found in lemma 4.10).
Assume that the window width d is fixed for all inputs and let k be defined
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as k = L%J, then we have:

I = I+

d n+1 1 2 2k-dtd 1
0w = g (2+ " |+ e |3 - wr oy )
+ Qya(a)+1) (4.29)
1 2 okdtd _1 9k _3
A= 3 Ck=D-3 3
(Lo 2\ ([nt1], 2 2] 1), 1
3 3.2 d v |d| ) T 3.on
+ As(a(d)+1) (4.30)
Proof:

The costs of the precomputation step are always the same for any in-
put, if the window width d is not computed for every input but once for
the whole application. As this is assumed, the numbers of operations
in the precomputation step are always the same, hence, the results
depicted in theorem 4.16 apply to the general average case precompu-
tation, too. Only the costs in the main exponentiation step have to be
refined. As no inversions occur whatsoever after the precomputation
has ended, only the values of Q(2) and A need to be computed.

Note that for d € Ny, it is [%1 =1.

For the number of squarings Q(2), the average results for inputs e € €,
e i.i.d., for some 7 € N, have been shown in theorem 4.16 to be

Q(2) = -Hﬂ?- Piﬂ .

d
3

Therefore, the average costs of inputs e € 2(n), e i.i.d., are the follow-
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ing. Note that d > 1.

Q(2)

i Z_;(#Q Glal 5177 -9)
3.d2n i(#ﬂz E-D +3?2n Zn: (#Qi. [%-D _d

e (B ) )
e (S ) ) -

A (B g e )
ox [f]-+7)

d 1 n+1 2 k-d+d
3.2n (2 (““F” 2 2d—1'(2 _1>

n+1] 2kdtd_1
d 24 —1

—-1+1

+(k+1y2”+ﬂ-[

o ff)

d
3. 2n

2
2.1 —-3-2"
* M ’ )
gk-dtd _ q n+1 1 2
.2 — 2 =
(’“*2 2n—1-<2d—1>+[ d 1*271—1 M 3)

n+1 1 2 ok-dtd _ 1
{2 — | Z - =
(e || o 3] - oo )

2k-dtd _ n+1
A(k+1). .97t 9.2~ 4 9n,
0 +1) 201 d

Wl

wl

Note that (%) follows with formulas (4.25) and (4.26).

For the average number of multiplications for inputs e € €;, e i.i.d.,
for some 7 € N, theorem 4.16 states that

. . 2d_§
Azl. 1 + g_ 4 . Z+1 _ 3_
3 |d 3 3-2d d 2d
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Therefore, the average number of multiplications for inputs e € Q(n),
e i.i.d., are

" Ti+1 2 4 1 2] 2¢-2
Z 2 . + (2 ). —. |2 = 3
: d 3 3.24) 2n |d 2d

2
"/ T, ,ont+l & k-d+d _
- 3.ontl <(k+1) 2 24 — 1 (2 1))
1 12 1 n+1
i S 1D I L) (L
gt (3o ma) o (0 e [
gk-dtd _ 1 . 2 4 1 [2] 2¢-3
T ado1 ) T\373d) v || T T
k+1 2k-d+d 1 1 k+1 2k—2

= T3 3.1 T3 3 3.2

N 12 n+11 (1 2 ok-d+d _ 1
3 3.2 d 3 3.24) 2n.(2d 1)

1 2 L (2_ 4 1 2] 2'-3
3 3.24) 2n " \3 3.2¢) 2 |4 2d

—~
*

=
—
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9 2k:-d+d -1 9 2k-d+d -1
3.9n 2d_1 T 3.9ntd 2d_1

C%k+2 (1 2\ ([n+1] 1 1 |2
3.2d 3 3.2d d on - gn—l1 d

= Z(k+1)-

d__ 5
_r-5 1
2 7 3.2m
_ 2 4. 2 2¢. (2kdtd _ 1) pokdtd 7 g.9d 4 9p 3
= g k+D—5- on+d. (24 — 1) B 3.2d
(o 2 ) ([rt1], 2 2] L),
3 3.2d d v |d| 2) " 3.2n

2 okdtd _1 9k _3
g' on+d B 3.2(1

+1_2 ”+1+33_i+1
3 3.2 d 2 \d n 3-2n

The equality (x) follows again from formulas (4.25) and (4.26). O

- C.(2k—1)—

With these results for the general average case of both variants of the Brauer
method, a new cost comparison for the average case can be formulated.

Theorem 4.27 (generalized average Brauer cost comparison)

Let ¢(I), ¢(Q(2)) and c(A) be known and declared as in theorem 4.17, let n
define the set Q(n) of all possible inputs.

Then the following inequality can be used to decide whether to use the tradi-
tional Brauer method or the NAF-based Brauer method in order to compute
x¢, if the inputs e € Q(n) are i.i.d.

step 1:

Perform step 1 of theorem 4.19 to get c;.

step 2:

Perform step 2 of theorem 4.19 to get cs.

step 3:

With ¢1 and co known, set

R o ("n—l—l-‘ _[21+2k'd+d—3-2d+2_k_1)
d 2n . (2¢ — 1)

( 5 (] [l

2kd
2n—|—d> te—a
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If R > 0, then the ordinary Brauer method is faster,
otherwise the NAF-based Brauer method is faster.

Proof:
step 1 and step 2

The precomputation step is independent from the configuration of the
input, the same operations are carried out for every input. Therefore,
the same results as in theorem 4.19 apply. This can also be seen in
lemma 2.11 and lemma 4.10.

step 3

For step 3, recall the generalized average case analysis of the traditional
Brauer method depicted in theorem 4.25, where the following costs
have been derived to form formulas (4.27) and (4.28):

k-d __
«Q@) - (k-d- g5 51 )

okd _ 1k

And recall that the costs derived for the generalized average case of
the NAF-based Brauer method from theorem 4.26, formulas (4.29) and

(4.30) are
ey (5 ([0 o 2] - 1)
b o) (3om-y -2 B0 MR, (220,
U”ZWJF%-EW—%)Jr&%)sz (4.32)

Martin Otto 2001, Diplomarbeit



162 4. EXPONENTIATION USING THE NAF

Subtracting formula (4.31) from (4.32) leads to the claimed result of

(4.32) — (4.31)

— c(Q(2))-[g-d-k+C§i-[n+l-‘+ 2d P-‘_g

3 d 3.2n | d
d 2.2kdtd_9 d 3-2kdtd _ 3. 9d
__.7_k.d_|_ .
3 2n. (24 —1) 3.9n 2d 1

1 E+3 2.2kdtd_9
+ ¢(A) - [——-(k+1)+3_2d— T

2d _ 9 n+1 2 [2 24 _ 9 2d

MR d | T |al) 3o T3 e

3_2k-d+d_3_2d
3.2n+d

- feeond (52 £ )
+

d 2kdtd _3.9d 1 9 k
3 2n. (20 1) ] C(A)'[

()

3.2kdtd _3.2d_9.okdtd 9 2d 4 94 2d

3. on+d
+

d n+1 2 [27] 2kdtd _3.2d 49
3 [dbz—nH* @0 1) —’H)
c(A) (k+3 2¢ — 2 n+1 2 [2

. — k-1 . ~ .|z
(e S (e [R)
2kd 3

4
+ on +2n+d>+02—01

+ :|+CQ_C1

+

:|+CQ—Cl

= c(Q(2))-
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4.5 Conclusions

Starting from the problem to solve a general exponentiation problem II =
(z,e), the results of this thesis are the analyses of the binary method and
Brauer’s method to generate addition chains using both the binary expan-
sion and the non-adjacent form (NAF) as basis for the representation of the
exponent e. The NAF was introduced and several properties of that special
signed binary digit representation were shown in order to give results of the
performance of the NAF-based variants of the binary method and Brauer’s
method. Some of the results are new to this thesis. The results most inter-
esting for practical applications are the results concerning the worst case and
the average case. They are presented next to each other for an easy overview
on pages 164 and 165 (tables 4.7 and 4.8). Note that for the precomputa-
tion, it has been shown that there exist addition chains 71,72 (lemma 2.11)
and addition-subtraction chains 71, %2,73,7s (theorem 4.16) which require
the stated numbers of operations. These choices are not the only possible
choices, but other choices are not needed. Results concerning a more general
definition of ”average case” have been shown in section 4.4.

The main result of this thesis is the construction of application oriented
cost comparisons, stated in algorithmic form. They can be used to decide
which representation of the exponent e yields the minimal costs for a cho-
sen method and binary length of the exponent e. These cost comparison
inequalities are once again depicted in table 4.9 on page 166.

The analyses within this thesis have shown that the approach to judge al-
gorithms for fast exponentiations only by comparing the total number of
arithmetical operations doesn’t relate to reality very well. In the opposite,
the same algorithm may be optimal (like the traditional binary method for
inputs e of the form e = 2¥ for some k), or not to recommend (like the
binary method in the general case, because it is only a special case of the
m-ary method, where an optimal window size can be easily determined).
But this is not only the fact for inputs of a special form, it also depends on the
actual implementation of the system, where fast exponentiation is needed.
Examples have been shown to emphasize that the same practical problem
(for example elliptic curve exponentiation) may have different solutions with
very different costs (see example 2.4 on page 54). These costs have a great
impact on the performance of the chosen algorithms, as all algorithms use
the basic operations of inversion, multiplication and squaring with different
ratios. The examples in section 4.3 have shown this effect. Therefore, for
application purposes, one must pay respect to this problem and analyze
algorithms with a view on the operations involved.

The search for a fast algorithm that computes an optimal addition chain
will not be successful, as this cannot be done in polynomial time. But
although the search for an excellent suboptimal algorithm is an interesting
and valuable task for mathematicians, the practical background requires to
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The binary expansion-based algorithms

costs of the binary expansion-based binary method

worst case costs average case costs
I= 0 I= 0
Q(2) = Aa(e) —1 Q(2) = Az(e) =1
A= Ao(e) —1 A= %-()\z(e)—l)

costs of the binary expansion-based Brauer method

worst case costs

I= 0
Q) = ([22] =1) - d+ Q0@
A= 2202 — 1+ 4, a0y
average costs
I = 0
Q(2) = ([242] =1) - d+ Q0@
25 ([559] 1) + A

important possible values for the precomputation

Ly229) Qr(24)(2) As(29)
7(2%) =71 0 1 24 —3
v(2%) =y 0 [Tizi] [WfQJ

Table 4.7: Final overview: the costs of the binary expansion-based methods
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The NAF-based algorithms

costs of the NAF-based binary method

worst case costs average costs (for d large enough)
I= 1 I= 1
Q(2) = Az (e) Q(2) = Xa(e) — 3
A= |24 | A= o]

costs of the NAF-based Brauer method

worst case costs

I= Iyaay+1)
Q@) = a- | 22| + Qa1 (2)
A= 22| + A
average costs (for d large enough)
I= Iy(ia)+1)
Q(2) = 31242 + % |29 - dt Quagan @)
A= 5 PZT(E)} + (5~ 33) - [A2(2)+11 - 2d2;g + As(a(a)+1)

important possible values for the precomputation

I5(a(a)+1) Q~(a(d)+1) Ax(i(d)+1)

F(A(d) +1) =3 1 sp(d—1)—1  2-s9(d—2) —2

Yd) +1) =% eosad) -3 Losad-1)—1  s(d-2)-1

N[

FAad) +1) =93 S+5-s2(d—1) Lesod—1)—1 2-s3(d—2)—2

N[

Y(A(d) +1) = 74 so(d — 2) sa(d—1) -1 sa(d—2) —1

Table 4.8: Final overview: the costs of the NAF-based Brauer methods
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Average cost comparisons

average cost comparison for the binary methods

If

Ri=o(I) + c(Q2)) - 2 = o(4) - % >

0
3

then the traditional binary method is faster,
otherwise the NAF-based binary method should be preferred.

average cost comparison for the Brauer methods

step 1: Compute

S c(Q(2)) +c(4) - (27 - 3) if ¢(4) < ¢(Q(2))
T Q@) +eA)) - (241 1) otherwise,

step 2: Compute

[ (D) ) - (s d—2) = 1) i ell) < e(A)
o = { 2. (A) - (sa(d—2) — 1) otherwise
and
- { (e(I) +c(Q(2)) - (5 - s2(d = 1) — 3) if e(T) < ¢(Q(2))
o(Q2)) - (s2(d — 1) — 1) otherwise,
and set
ca : =c(I)+ c + co,

step 3: If for

o (55 P (2 k) P )

+eQ@) - 22. (PQ(‘Z}Z* 1} - [’\QSS)D T

3

R > 0, then the ordinary Brauer method is faster,
otherwise the NAF-based Brauer method is faster.

Table 4.9: Average cost comparisons derived in section 4.3
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not only count operations, but the related computational costs.

This thesis has shown that there is a large number of different approaches
to construct fast exponentiation algorithms using addition chains and the
most important approaches have been presented in detail in chapter 1. The
most popular ones, the binary method and its first generalization, the m-ary
method, have been analyzed in detail in chapter 2 and modified into their
NAF-based variants in chapters 3 and 4. It has been shown that the NAF
can be a valuable improvement, if inversions are cheap.

Future work could include the analyses of other basic approaches, for ex-
ample the sliding window methods and data compression approaches, based
on the NAF. Some work has been done on that subject (for example in
[KY98]), but costs have not yet been shown individually for the basic arith-
metical operations. There are also promising approaches with signed g¢-adic
digit representations as introduced in section 3.5 and signed digit represen-
tations, which are not equal to the NAF, but show other properties. To give
a taste of the latter, the following section will give in brief the idea of an
approach by K. Koyama and Y. Tsuruoka.

4.6 Beyond NAF based algorithms

The algorithms analyzed in chapter 4 have been based on the binary NAF
defined in section 3.3. This has led to cost comparison inequalities in order
to decide when this representation can account for a valuable gain of speed
in the well known exponentiation algorithms.

Besides the binary NAF, other approaches are possible. In section 3.5,
possible generalizations of the NAF for general base representations have
been mentioned. It would be possible to use those representations as a
basis for Brauer’s method, too. This seems not to have been presented in
literature so far.

Another approach, which has been attracting the interest of different authors
is an idea first published by K. Koyama and Y. Tsuruoka in [KT92]. They
suggest another representation of the exponent, which doesn’t give the NAF,
but has minimal weight, too, and aims to create longer runs of zeros, hence
increasing the chance of zero windows for all window methods applied on
top of that representation. This is a very promising approach, because it
aims to further reduce the number of expected multiplications in the main
exponentiation step of Brauer’s method. As it creates the same Hamming
weight as the NAF, it is not intended to replace the NAF-based binary
method.

The proposed algorithm is basically a modification of the transformation rule
(3.4) by Morain and Olivos (presented in section 3.3.1). It also searches for
subsets of the binary expansion and replaces them according to the following
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rule:

B=(1...b;...1) +— T=(10...%...1) (4.33)
where tz' = bi —1

The transformation rule is applied, whenever the difference between the
number of ones in B (the Hamming weight of B) and the number of zeros
in B is greater or equal to 3. In this, it modifies the algorithm of Morain
and Olivos, who apply their rule if the difference was greater or equal to 2.
While Morain and Olivos had to apply their transformation for this case,
too, in order to get the NAF, Koyama and Tsuruoka do not compute the
NAF but keep runs of two adjacent nonzero digits.

As the weight of the two representations is the same, the chance of getting
zero runs with more than one digit is increased using transformation (4.33)
and, hence, the chance of getting zero windows in the d-NAF is higher, thus
providing a lower average number of multiplications.

It is not known if this possible improvement will be significant. But this
approach shows, that there are possibilities beyond the non-adjacent form
to gain further speed using signed digit representations of the exponent.

Brauer addition-subtraction chains



51

Appendix A

Optimal addition chains

n I(n) example for S(x(n)) n I(n) example for S(x(n))
1 0 ) 26 6 (1,2,3,5,8,13,26)

2 1 (1,2) 27 6 (1,2,3,6,9,18,27)

3 2 (1,2,3) 28 6 (1,2,3,4,7,14,28)

4 2 (1,2,4) 29 7 (1,2,3,4,7,11,18,29)

5 3 (1,2,3,5) 30 6  (1,2,3,5,10,15,30)

6 3 (1,2,3,6) 31 7 (1,2,3,4,7,14,17,31)

7 T (1,2,3.47) 32 5 (1,2,4,8,16,32)

8 3 (1,2,4,8) 33 6 (1,2,4,8,16,17,33)

9 1 (1,2,3,6,9) 34 6 (1,2,4,8,9,17,34)
10 1T (1,2,3,5,10) 35 7 (1,2,3,4,7,14,21,35)
11 5 (1,2,34,7,11) 36 6 (1,2,3,6,9,18,36)
12 1 (1,2,3,6,12) 37 7 (1,2,3,5,8,16,21,37)
13 5 (1,2,3,5,8,13) 38 7 (1,2,3,4,8,11,19,38)
12 5 (1,2,3,4,7,14) 39 7 (1,2,3,5,8,13,26,39)
15 5 (1,2,3,5,10,15) 40 6 (1,2,3,5,10,20,40)
16 1 (1,2,4,3,16) a1 7 (1,2,3,5,10,20,21,41)
17 5 (1,2,4,8,9,17) 12 7 (1,2,3,4,7,14,21,42)
18 5 (1,2,3,6,9,18) 3 7 (1,2,3,5,10,20,23,43)
19 6 (1,2,3,4,8,11,19) 14 7 (1,2,3,4,7,11,22,44)
20 5 (1,2,3,5,10,20) 15 7 (1,2,3,5,10,15,30,45)
21 6 (1,2,3,4,7,14,21) 6 7 (1,2,3,5,10,13,23,46)
22 6 (1,2,3,4,7,11,22) 47 8 (1,2,3,4,7,10,20,27,47)
23 6 (1,2,3,5,10,13,23) 48 6 (1,2,3,6,12,24,48)
24 5 (1,2,3,6,12,24) 19 7 (1,2,3,6,12,24,25,49)
25 6 (1,2,3,5,10,15,25) 50 7 (1,2,3,5,10,15,25,50)
51 7 (1,2,3,6,12,24,27,51) 76 8  (1,2,3,4,8,11,19,38,76)
52 7 (1,2,3,5,8,13,26,52) 77 8 (1,2,4,5,9,18,36,72,77)
53 8 (1,2,3,5,6,12,24,29,53) 78 8 (1,2,3,5,8,13,26,52,78)
54 7 (1,2,3,6,9,18,27,54) 79 9 (1,2,3,4,7,9,18,36,72,79)
55 8 (1,2,3,4,7,11,22,33,55) 30 7 (1,2,3,5,10,20,40,30)
56 7 (1,2,3,4,7,14,28,56) 81 8 (1,2,3,5,10,20,40,80,81)
57 8 (1,2,3,4,7,14,28,29,57) 82 8 (1,2,3,5,10,20,21,41,82)
58 8 (1,2,3,4,7,11,18,29,58) 83 8 (1,2,3,5,10,20,40,80,83)
59 8 (1,2,3,4,7,14,28,31,59) 84 8 (1,2,3,4,7,14,21,42,84)
60 7 (1,2,3,5,10,15,30,60) 85 8 (1,2,3,5,10,20,40,80,85)
61 8 (1,2,3,5,7,14,28,33,61) 86 8 (1,2,3,5,10,20,23,43,86)
62 8 (1,2,3,4,7,14,17,31,62) 87 9 (1,2,3,4,7,10,20,40,80,87)
63 8 (1,2,3,4,7,14,21,42,63) 83 8 (1,2,3,4,7,11,22,44,88)
64 6 (1,2,4,3,16,32,64) 89 9 (1,2,3,4,7,11,22,44,88,89)
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65 7 (1,2,4,8,16,32,33,65) 90 8 (1,2,3,5,10,15,30,60,90)
66 7 (1,2,4,8,16,17,33,66) 91 9 (1,2,3,4,7,11,22,44,88 91)
67 8 (1,2,3,4,8,16,32,35,67) 92 8 (1,2,3,5,10,13,23,46,92)
68 7 (1,2,4,8,9,17,34,68) 93 9 (1,2,3,4,7,14,17,31,62,93)
69 8 (1,2,3,5,8,16,32,37,69) 94 9  (1,2,3,4,7,10,20,27,47,94)
70 8 (1,2,3,4,7,14,21,35,70) 95 9 (1,2,3,4,7,11,22,44,88 95)
71 9 (1,2,3,4,7,8,16,32,39,71) 96 7 (1,2,3,6,12,24,48,96)
72 7 (1,2,3,6,9,18,36,72) 97 8 (1,2,3,6,12,24,48,96,97)
73 8  (1,2,3,6,9,18,36,37,73) 98 8 (1,2,3,6,12,24,25,49,98)
74 8 (1,2,3,5,8,16,21,37,74) 99 8  (1,2,3,6,12,24,48,96,99)
75 8 (1,2,3,5,10,15,25,50,75) 100 8 (1,2,3,5,10,15,25,50,100)
101 9  (1,2,3,5,6,12,24,48,96,101) 126 9 (1,2,3,4,7,14,21,42,84,126)
102 8 (1,2,3,6,12,24,27,51,102) 127 10 (1,2,3,4,7,8,15,30,60,120,127)
103 9 (1,2,3,5,7,12,24,48,96,103) 128 7 (1,2,4,8,16,32,64,128)
104 8 (1,2,3,5,8,13,26,52,104) 129 8  (1,2,4,8,16,32,64,128,129)
105 9 (1,2,3,4,7,14,21,35,70,105) 130 8 (1,2,4,8,16,32,33,65,130)
106 9 (1,2,3,5,6,12,24,29,53,106) 131 9 (1,2,3,4,8,16,32,64,128,131)
107 9 (1,2,3,5,8,13,26,52,104,107) 132 8 (1,2,4,8,16,17,33,66,132)
108 8 (1,2,3,6,9,18,27,54,108) 133 9 (1,2,3,5,8,16,32,64,128,133)
109 9 (1,2,3,5,8,13,26,52,104,109) 134 9 (1,2,3,4,8,16,32,35,67,134)
110 9 (1,2,3,4,7,11,22,33,55,110) 135 9 (1,2,3,5,10,15,30,45,90,135)
111 9  (1,2,3,5,8,16,21,37,74,111) 136 8 (1,2,4,8,9,17,34,68,136)
112 8  (1,2,3,4,7,14,28,56,112) 137 9 (1,2,4,8,9,16,32,64,128,137)
113 9 (1,2,3,4,7,14,28,56,112,113) 138 9  (1,2,3,5,8,16,32,37,69,138)
114 9 (1,2,3,4,7,14,28,29,57,114) 139 10 (1,2,3,4,7,10,17,34,68,136,139)
115 9 (1,2,3,4,7,14,28,56,112,115) 140 9 (1,2,3,4,7,14,21,35,70,140)
116 9 (1,2,3,4,7,11,18,29,58,116) 141 10 (1,2,3,4,7,10,20,27,47,94,141)
117 9 (1,2,3,5,7,14,28,56,112,117) 142 10 (1,2,3,4,7,8,16,32,39,71,142)
118 9 (1,2,3,4,7,14,28,31,59,118) 143 10 (1,2,3,4,7,10,17,34,68,136,143)
119 9  (1,2,3,4,7,14,28,56,112,119) 144 8 (1,2,3,6,9,18,36,72,144)
120 8 (1,2,3,5,10,15,30,60,120) 145 9 (1,2,3,6,9,18,36,72,144,145)
121 9 (1,2,3,5,10,15,30,60,120,121) 146 9 (1,2,3,6,9,18,36,37,73,146)
122 9 (1,2,3,5,7,14,28,33,61,122) 147 9 (1,2,3,6,9,18,36,72,144,147)
123 9 (1,2,3,5,10,15,30,60,120,123) 148 9  (1,2,3,5,8,16,21,37,74,148)
124 9 (1,2,3,4,7,14,17,31,62,124) 149 9 (1,2,4,5,9,18,36,72,144,149)
125 9 (1,2,3,5,10,15,25,50,100,125) 150 9 (1,2,3,5,10,15,25,50,100,150)
151 10 (1,2,3,4,7,9,18,36,72,144,151) 176 9 (1,2,3,4,7,11,22,44,88,176)
152 9  (1,2,3,4,8,11,19,38,76,152) 177 10 (1,2,3,4,7,11,22,44,88,176,177)
153 9 (1,2,3,6,9,18,36,72,144,153) 178 10 (1,2,3,4,7,11,22,44,45,89,178)
154 9  (1,2,4,5,9,18,36,41,77,154) 179 10 (1,2,3,4,7,11,22,44,88,176,179)
155 10 (1,2,3,4,7,11,18,36,72,144,155) 180 9 (1,2,3,5,10,15,30,45,90,180)
156 9 (1,2,3,5,8,13,26,39,78,156) 181 10 (1,2,3,5,6,11,22,44,88,176,181)
157 10 (1,2,3,5,7,12,19,38,76,152,157) 182 10 (1,2,3,4,7,11,22,44,47,91,182)
158 10 (1,2,3,4,7,9,18,36,43,79,158) 183 10 (1,2,3,4,7,11,22,44,88,176,183)
159 10 (1,2,3,4,8,16,19,35,70,140,159) 184 9 (1,2,3,5,10,13,23,46,92,184)
160 8 (1,2,3,5,10,20,40,80,160) 185 10 (1,2,3,5,8,16,21,37,74,148,185)
161 9 (1,2,3,5,10,20,40,80,160,161) 186 10 (1,2,3,4,7,14,17,31,62,124,186)
162 9 (1,2,3,5,10,20,40,41,81,162) 187 10 (1,2,3,4,7,11,22,44,88,176,187)
163 9 (1,2,3,5,10,20,40,80,160,163) 188 10 (1,2,3,4,7,10,20,27,47,04,188)
164 9 (1,2,3,5,10,20,21,41,82,164) 189 10 (1,2,3,4,7,14,21,42,63,126,189)
165 9  (1,2,3,5,10,20,40,80,160,165) 190 10 (1,2,3,4,7,11,22,44,51,95,190)
166 9 (1,2,3,5,10,20,40,43,83,166) 191 11 (1,2,3,4,7,8,15,22,44,88,103,191)
167 10 (1,2,3,4,7,10,20,40,80,160,167) 192 8 (1,2,3,6,12,24,48,96,192)
168 9  (1,2,3,4,7,14,21,42,84,168) 193 9 (1,2,3,6,12,24,48,96,97,193)
169 10 (1,2,3,4,7,14,21,42,84,168,169) 194 9 (1,2,3,6,12,24,48,49,97,194)
170 9 (1,2,3,5,10,20,40,45,85,170) 195 9 (1,2,3,6,12,24,48,96,99,195)
171 10 (1,2,3,4,7,14,21,42,84,168,171) 196 9 (1,2,3,6,12,24,25,49,98,196)
172 9 (1,2,3,5,10,20,23,43,86,172) 197 10 (1,2,3,5,6,12,24,48,96,101,197)
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171

173 10 (1,2,3,5,7,14,21,42,84,168,173) 198 9 (1,2,3,6,12,24,48,51,99,198)

174 10 (1,2,3,4,7,10,20,40,47,87,174) 199 10 (1,2,3,5,7,12,24,48,96,192,199)

175 10 (1,2,3,4,7,14,21,35,70,140,175) 200 9 (1,2,3,5,10,15,25,50,100,200)

201 10 (1,2,3,4,8,16,32,35,67,134,201) 226 10 (1,2,3,4,7,14,28,56,57,113,226)

202 10 (1,2,3,5,6,12,24,48,53,101,202) 227 10 (1,2,3,4,7,14,28,56,112,115,227)
203 10 (1,2,3,5,10,15,25,50,100,200,203) 228 10 (1,2,3,4,7,14,28,29,57,114,228)

204 9 (1,2,3,6,12,24,27,51,102,204) 229 10 (1,2,3,5,7,14,28,56,112,117,229)
205 10 (1,2,3,5,10,15,25,50,100,200,205) 230 10 (1,2,3,4,7,14,28,56,59,115,230)

206 10 (1,2,3,5,7,12,24,48 55,103,206) 231 10 (1,2,3,4,7,14,28,56,112,119,231)
207 11 (1,2,3,5,8,16,32,37,69,138,207) 232 10 (1,2,3,4,7,11,18,29,58,116,232)

208 9 (1,2,3,5,8,13,26,52,104,208) 233 10 (1,2,4,5,9,14,28,56,112,121,233)
209 10 (1,2,3,5,8,13,26,52,104,208,209) 234 10 (1,2,3,5,7,14,28,56,61,117,234)

210 10 (1,2,3,4,7,14,21,35,70,140,210) 235 11 (1,2,3,4,7,10,20,27,47,94,141,235)
211 10 (1,2,3,5,8,13,26,52,104,107,211) 236 10 (1,2,3,4,7,14,28,31,59,118,236)

212 10 (1,2,3,5,6,12,24,29,53,106,212) 237 11 (1,2,3,4,7,9,18,36,43,79,158,237)
213 10 (1,2,3,5,8,13,26,52,104,109,213) 238 10 (1,2,3,4,7,14,28,56,63,119,238)

214 10 (1,2,3,5,8,13,26,52,55,107,214) 239 11 (1,2,3,4,7,11,18,29,58,116,123,239)
215 10 (1,2,3,5,10,15,25,50,100,115,215) 240 9  (1,2,3,5,10,15,30,60,120,240)

216 9 (1,2,3,6,9,18,27,54,108,216) 241 10 (1,2,3,5,10,15,30,60,120,121,241)
217 10 (1,2,3,6,9,18,27,54,108,109,217) 242 10 (1,2,3,5,10,15,30,60,61,121,242)
218 10 (1,2,3,5,8,13,26,52,57,109,218) 243 10 (1,2,3,5,10,15,30,60,120,123,243)
219 10 (1,2,3,6,9,18,27,54,108,111,219) 244 10 (1,2,3,5,7,14,28,33,61,122,244)

220 10 (1,2,3,4,7,11,22,33,55,110,220) 245 10 (1,2,3,5,10,15,30,60,120,125,245)
221 10 (1,2,3,5,8,13,26,52,104,117,221) 246 10 (1,2,3,5,10,15,30,60,63,123,246)
222 10 (1,2,3,5,8,16,21,37,74,111,222) 247 11 (1,2,3,4,7,8,15,30,60,120,127,247)
223 11 (1,2,3,4,7,9,18,27,54,108,115,223) | 248 10 (1,2,3,4,7,14,17,31,62,124,248)

224 9  (1,2,3,4,7,14,28,56,112,224) 249 10 (1,2,3,5,10,20,40,43,83,166,249)
225 10 (1,2,3,4,7,14,28,56,112,113,225) 250 10 (1,2,3,5,10,15,25,50,75,125,250)
251 11 (1,2,3,4,7,11,15,30,60,120,131,251) | 276 10 (1,2,3,5,8,16,32,37,69,138,276)

252 10 (1,2,3,4,7,14,21,42,63,126,252) 277 11 (1,2,3,5,6,11,17,34,68,136,141,277)
253 11 (1,2,3,4,7,11,22,33,55,110,143,253) | 278 11 (1,2,3,4,7,10,17,34,68,71,139,278)
254 11 (1,2,3,4,7,8,15,30,60,67,127,254) 279 11 (1,2,3,4,7,10,17,34,68,136,143,279)
255 10 (1,2,3,5,10,15,30,60,120,135,255) 280 10 (1,2,3,4,7,14,21,35,70,140,280)

256 8 (1,2,4,8,16,32,64,128,256) 281 10 (1,2,4,8,9,17,34,68,136,145,281)
257 9 (1,2,4,8,16,32,64,128,129,257) 282 11 (1,2,3,4,7,10,17,34,68,136,146,282)
258 9  (1,2,4,8,16,32,64,65,129,258) 283 11 (1,2,3,4,7,14,21,35,70,140,143,283)
259 10 (1,2,3,4,8,16,32,64,128,131,259) 284 11 (1,2,3,4,7,8,16,32,39,71,142,284)
260 9 (1,2,4,8,16,32,33,65,130,260) 285 11 (1,2,3,4,7,11,22,44,51,95,190,285)
261 10 (1,2,3,5,8,16,32,64,128,133,261) 286 11 (1,2,3,4,7,10,17,34,68,75,143,286)
262 10 (1,2,3,4,8,16,32,64,67,131,262) 287 11 (1,2,3,4,7,14,21,35,70,140,147,287)
263 11 (1,2,3,4,7,8,16,32,64,128,135,263) | 288 9 (1,2,3,6,9,18,36,72,144,288)

264 9 (1,2,4,8,16,17,33,66,132,264) 289 10 (1,2,3,6,9,18,36,72,144,145,289)
265 10 (1,2,4,8,9,16,32,64,128,137,265) 290 10 (1,2,3,6,9,18,36,72,73,145,290)

266 10 (1,2,3,5,8,16,32,64,69,133,266) 291 10 (1,2,3,6,9,18,36,72,144,147,291)
267 11 (1,2,3,4,7,11,22,33,66,132,135,267) | 292 10 (1,2,3,6,9,18,36,37,73,146,292)

268 10 (1,2,3,4,8,16,32,35,67,134,268) 293 10 (1,2,4,5,9,18,36,72,144,149,293)
269 11 (1,2,3,4,8,16,32,35,67,134,135,269) | 294 10 (1,2,3,6,9,18,36,72,75,147,294)

270 10 (1,2,3,5,10,15,30,45,90,135,270) 205 1 (1,2,3,4,7,9,18,36,72,144,151,295)
271 11 (1,2,3,4,7,11,22,33,66,132,139,271) | 296 10 (1,2,3,5,8,16,21,37,74,148,296)

272 9 (1,2,4,8,9,17,34,68,136,272) 297 10 (1,2,3,6,9,18,36,72,144,153,297)
273 10 (1,2,4,8,9,17,34,68,136,137,273) 208 10 (1,2,4,5,9,18,36,72,77,149,298)

274 10 (1,2,4,8,9,17,34,68,69,137,274) 299 11 (1,2,3,4,7,11,18,36,72,144,155,299)
275 11 (1,2,3,4,7,10,17,34,68,136,139,275) | 300 10 (1,2,3,5,10,15,25,50,75,150,300)
301 11 (1,2,3,4,7,14,21,35,70,140,161,301) | 326 10 (1,2,3,5,10,20,40,80,83,183,326)
302 11 (1,2,3,4,7,9,18,36,72,79,151,302) 327 11 (1,2,3,4,7,10,20,40,80,160,167,327)
303 11 (1,2,3,4,8,16,32,35,67,134,169,303) | 328 10 (1,2,3,5,10,20,21,41,82,164,328)
304 10 (1,2,3,4,8,11,19,38,76,152,304) 329 11 (1,2,3,4,8,16,32,64,67,131,198,329)
305 11 (1,2,3,4,8,11,19,38,76,152,153,305) | 330 10 (1,2,3,5,10,20,40,80,85,165,330)
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306 10 (1,2,3,6,9,18,36,72,81,153,306) 331 11 (1,2,3,5,10,11,20,40,80,160,171,331)
307 11 (1,2,3,4,8,11,19,38,76,152,155,307) | 332 10 (1,2,3,5,10,20,40,43,83,166,332)
308 10 (1,2,4,5,9,18,36,41,77,154,308) 333 11 (1,2,3,5,8,16,21,37,74,111,222,333)
309 11 (1,2,3,5,7,12,19,38,76,152,157,309) | 334 11 (1,2,3,4,7,10,20,40,80,87,167,334)
310 11 (1,2,3,4,7,11,18,36,72,83,155,310) | 335 11 (1,2,3,4,8,16,32,35,67,134,201,335)
311 11 (1,2,3,5,7,12,19,38,76,152,159,311) | 336 10 (1,2,3,4,7,14,21,42,84,168,336)
312 10 (1,2,3,5,8,13,26,39,78,156,312) 337 11 (1,2,3,4,7,14,21,42,84,168,169,337)
313 11 (1,2,3,5,8,13,26,39,78,156,157,313) | 338 11 (1,2,3,4,7,14,21,42,84,85,169,338)
314 11 (1,2,3,5,7,12,19,38,76,81,157,314) | 339 11 (1,2,3,4,7,14,21,42,84,168,171,339)
315 11 (1,2,3,4,7,14,21,35,70,105,210,315) | 340 10 (1,2,3,5,10,20,40,45,85,170,340)
316 11 (1,2,3,4,7,9,18,36,43,79,158,316) 341 11 (1,2,3,5,7,14,21,42,84,168,173,241)
317 11 (1,2,3,5,8,13,26,39,78,156,161,317) | 342 11 (1,2,3,4,7,14,21,42,84,87,171,342)
318 11 (1,2,3,4,8,16,19,35,70,89,159,318) | 343 11 (1,2,3,4,7,14,21,42,84,168,175,343)
319 11 (1,2,3,6,7,1,26,39,78,156,163,319) | 344 10 (1,2,3,5,10,20,23,43,86,172,344)
320 9 (1,2,3,5,10,20,40,80,160,320) 345 11 (1,2,3,4,7,14,28,56,59,115,230,345)
321 10 (1,2,3,5,10,20,40,80,160,161,321) | 346 11 (1,2,3,5,7,14,21,42,84,89,173,346)
322 10 (1,2,3,5,10,20,40,80,81,161,322) 347 11 (1,2,3,5,10,11,21,42,84,168,179,347)
323 10 (1,2,3,5,10,20,40,80,160,163,323) | 348 11 (1,2,3,4,7,10,20,40,47,87,174,348)
324 10 (1,2,3,5,10,20,40,41,81,162,324) 349 11 (1,2,3,5,8,13,21,42,84,168,181,349)
325 10 (1,2,3,5,10,20,40,80,160,165,325) | 350 11 (1,2,3,4,7,14,21,35,70,105,175,350)
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ary digit representation, 76
Ap(e) the length of the Bocharova-
partition of the binary ex-
pansion of e, 46
L denoting a specific formal
language, 106
Lambert’s W function, 69

Brauer addition-subtraction chains
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I(e) minimal length of an ad-
dition chain for e, 17
length of the NAF, 91

M; multiplication with value i,
24

M a message, 9

NAF transformation by Morain
and Olivos, 80

m~ary method, 58-70
Brauer method, see Brauer
method
costs of an m-step, 63
costs of the exponentiation
step, 62
examples, 24
general idea, 24
NAF-based Brauer method,
see NAF-based Brauer method
m defined as the digit g-1, 98

NAF, a general NAF, 108
Ng4(n) the set of all sparse signed
g-ary digit strings with at
most n digits, 92, 94
NS V(n) the set of all sparse
signed g¢-ary digit strings
with exactly n digits whose
binary expansion needs one
digit less, 92
NAF the non-adjacent form,
78, 80
NAF-based binary method, 112—
117
cost overview, 116
number of inversions, 115
number of multiplications, 113
number of squarings, 112
NAF-based Brauer method, 117-
138

cost overview, 135

costs of precomputation, 121

inversions in the exponenti-
ation step, 134

multiplications in the expo-
nentiation step, 129

squarings in the exponenti-
ation step, 127

NMC number of minimal chains,

18

fi(d) variable, 121, 130

vp(e) Hamming weight of the
b-adic expansion of e, 16,
17

v;3(e) Hamming weight for a
signed binary digit repre-
sentation of e, 76, 107

normal basis, 49

number of g-steps, 52

number of additions, 52

number of operations, 73

number of sparse signed g-ary
digit strings, 94

number of sparse unsigned bi-
nary digit strings, 105

2 set of possible (elementary)
results of a probabilistic trial,
44

Q(n) set of possible results of
a probabilistic trial, 152

Q,, the set of all integers with
exact n bit long binary ex-
pansion, 56, 152

O point at infinity of an ellip-
tic curve, 7

occurence of the letter 0 in the
NAF, 106

operation dependent cost mea-
sure, 73

optimal addition chains, 169
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P
P, P, coordinates of the point
P, 7
IT an exponentiation problem,
11
P point on an elliptic curve, 7,
11
p
p4 Alice’s public key, 8
powertree method, 34
probability distribution of vz(e),
108
proper, 45
Q
Qz, Qy coordinates of the point
Q7
Qy(e) has been defined to be
equal to Qy()(2), 52
Qy(e) (g) number of g-steps, 52
Q point on an elliptic curve, 7
q
g-addition chain, 20
g-steps, 52
q a large prime, 8
R
R result of a cost comparison,
139, 140, 143, 144, 160,
166
r
p; prime factor in the prime
factorization of an integer,
27
replacing doublings by addi-
tions, 13
S

S(x) the semantics of an addition-
subtraction chains, 72
S(x) the semantics of an ad-
dition chains, 12, 19
S
sq(n) the number of all sparse
signed g-ary digit strings

with at most n digits, 94,
102
4 (n) the number of non-
adjacent unsigned binary
digit strings, 105
S™ exponentiation with m, 24

S

o total number of operations
(Q+A), 68

s¢(n) the number of all sparse
signed g-ary digit strings
with at most n digits, 92

55" (n) the number of sparse
signed g-ary digit strings
with exactly n digits whose
binary expansion needs one
digit less, 93

s4 Alice’s private key, 8

sp Bob’s private key, 9

sgn(x) denoting the signum func-
tion, 86

signed digit representation, 76

sliding window methods, 25

T; the tail of a window, 130
Tunstall code, 45

t; the length of a tail T; of a
window, 130

u; elements in a continued frac-
tions vector, 30

Val(Ny(n)) the set of the inte-
ger values of all elements
of Ny(n), 92, 94

Val(w) the integer e whose NAF
is w, 92

vectorial addition chain, 19,
30

Brauer addition-subtraction chains
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W; window in a Yacobi com-
pression partitioning, 41

W; window of a Brauer parti-
tion, 130

W! window of a d-NAF parti-
tion, 130

Lambert’s W function, 69

w word in a formal language,
106

wg(e) the arithmetic weight of
a number e, 76

x general base of an exponen-
tiation, 11

Yacobi’s data compression method,

40

Ly =1|nZ,7
Z intermediate value in proof
of theorem 3.18(2), 96

¢, total number of occurrences
of the letter 0 over all NAF
strings of length n, 106

z; number of zeros between the
i-th and the (i-1)st win-

dow in a Yacobi or Bocharova

partitioning of the input’s
binary expansion, 41
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